Allan, R. P., C. L. Liu, N. G. Loeb, M. D. Palmer, M. Roberts, D. Smith, and P.-L. Vidale, 2014: Changes in global net radiative imbalance 1985−2012. Geophys. Res. Lett., 41, 5588−5597, https://doi.org/10.1002/2014GL060962.
Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. CadyPereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transf., 91, 233−244, https://doi.org/10.1016/j.jqsrt.2004.05.058.
Chen, D. D., J. P. Guo, H. Q. Wang, J. Li, M. Min, W. H. Zhao, and D. Yao, 2018: The cloud top distribution and diurnal variation of clouds over East Asia: Preliminary results from advanced Himawari imager. J. Geophys. Res., 123, 3724−3739, https://doi.org/10.1002/2017JD028044.
Chen, D. D., and Coauthors, 2019a: Mesoscale convective systems in the asian monsoon region from Advanced Himawari imager: Algorithms and preliminary results. J. Geophys. Res., 124, 2210−2234, https://doi.org/10.1029/2018JD029707.
Chen, T. M., J. P. Guo, Z. Q. Li, C. F. Zhao, H. Liu, M. Cribb, F. Wang, and J. He, 2016: A CloudSat perspective on the cloud climatology and its association with aerosol perturbations in the vertical over Eastern China. J. Atmos. Sci., 73, 3599−3616, https://doi.org/10.1175/JAS-D-15-0309.1.
Chen, Y. L., and Y. F. Fu, 2018: Tropical echo-top height for precipitating clouds observed by multiple active instruments aboard satellites. Atmos. Res., 199, 54−61, https://doi.org/10.1016/j.atmosres.2017.08.008.
Chen, Y. L., K. Z. Chong, and Y. F. Fu, 2019b: Impacts of distribution patterns of cloud optical depth on the calculation of radiative forcing. Atmos. Res., 218, 70−77, https://doi.org/10.1016/j.atmosres.2018.11.007.
Costa-Surós, M., J. Calbó, J. A. González, and J. Martin-Vide, 2013: Behavior of cloud base height from ceilometer measurements. Atmospheric Research, 127, 64−76, https://doi.org/10.1016/j.atmosres.2013.02.005.
Dai, A. G., T. R. Karl, B. M. Sun, and K. E. Trenberth, 2006: Recent trends in cloudiness over the United States: A tale of monitoring inadequacies. Bull. Amer. Meteor. Soc., 87, 597−606, https://doi.org/10.1175/BAMS-87-5-597.
George, G., C. Sarangi, S. N. Tripathi, T. Chakraborty, and A. Turner, 2018: Vertical structure and radiative forcing of monsoon clouds over Kanpur during the 2016 INCOMPASS field campaign. J. Geophys. Res., 123, 2152−2174, https://doi.org/10.1002/2017JD027759.
Guo, J. P., and Coauthors, 2016: The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data. Atmospheric Chemistry and Physics, 16, 13 309−13 319, https://doi.org/10.5194/acp-16-13309-2016.
Guo, J. P., and Coauthors, 2019: Shift in the temporal trend of boundary layer height in China using long‐term (1979−2016) radiosonde data. Geophys. Res. Lett., 46(11), 6080−6089, https://doi.org/10.1029/2019GL082666.
Henderson, D. S., T. L’Ecuyer, G. Stephens, P. Partain, and M. Sekiguchi, 2013: A multisensor perspective on the radiative impacts of clouds and aerosols. J. Appl. Meteorol. Climatol., 52, 853−871, https://doi.org/10.1175/JAMC-D-12-025.1.
Kato, S., and Coauthors, 2011: Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties. J. Geophys. Res., 116, D19209, https://doi.org/10.1029/2011JD016050.
Li, Z. Q., and Coauthors, 2019: East Asian study of tropospheric aerosols and their impact on regional clouds, precipitation, and climate (EAST‐AIRCPC). J. Geophys. Res., 124, 13 026−13 054, https://doi.org/10.1029/2019JD030758.
Loeb, N. G., S. Kato, W. Y. Su, T. Wong, F. G. Rose, D. R. Doelling, J. R. Norris, and X. L. Huang, 2012: Advances in understanding top-of-atmosphere radiation variability from satellite observations. Surveys in Geophysics, 33, 359−385, https://doi.org/10.1007/s10712-012-9175-1.
Lou, M. Y., and Coauthors, 2019: On the relationship between aerosol and boundary layer height in Summer in China under different thermodynamic conditions. Earth and Space Science, 6(5), 887−901, https://doi.org/10.1029/2019EA000620.
Lü, Q. Y., J. M. Li, T. H. Wang, and J. P. Huang, 2015: Cloud radiative forcing induced by layered clouds and associated impact on the atmospheric heating rate. Journal of Meteorological Research, 29, 779−792, https://doi.org/10.1007/s13351-015-5078-7.
Martucci, G., C. Milroy, and C. D. O’Dowd, 2010: Detection of cloud-base height using jenoptik CHM15K and vaisala CL31 ceilometers. J. Atmos. Oceanic Technol., 27, 305−318, https://doi.org/10.1175/2009JTECHA1326.1.
Meloni, D., A. di Sarra, T. Di Iorio, and G. Fiocco, 2005: Influence of the vertical profile of Saharan dust on the visible direct radiative forcing. Journal of Quantitative Spectroscopy and Radiative Transfer, 93, 397−413, https://doi.org/10.1016/j.jqsrt.2004.08.035.
Menzel, W. P., and Coauthors, 2008: MODIS global cloud-top pressure and amount estimation: Algorithm description and results. J. Appl. Meteorol. Climatol., 47, 1175−1198, https://doi.org/10.1175/2007JAMC1705.1.
Min, M., and Z. B. Zhang, 2014: On the influence of cloud fraction diurnal cycle and sub-grid cloud optical thickness variability on all-sky direct aerosol radiative forcing. Journal of Quantitative Spectroscopy and Radiative Transfer, 142, 25−36, https://doi.org/10.1016/j.jqsrt.2014.03.014.
Min, M., J. Li, F. Wang, Z. J. Liu, and W. P. Menzel, 2020: Retrieval of cloud top properties from advanced geostationary satellite imager measurements based on machine learning algorithms. Remote Sens. Environ., 239, 111616, https://doi.org/10.1016/j.rse.2019.111616.
Mishra, S., and A. Datta-Gupta, 2018: Applied Statistical Modeling and Data Analytics: A Practical Guide for the Petroleum Geosciences. Elsevier Inc.
Mitchell, D. L., and W. Finnegan, 2009: Modification of cirrus clouds to reduce global warming. Environmental Research Letters, 4, 045102, https://doi.org/10.1088/1748-9326/4/4/045102.
Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459−473, https://doi.org/10.1109/TGRS.2002.808301.
Poore, K. D., J. H. Wang, and W. B. Rossow, 1995: Cloud layer thicknesses from a combination of surface and upper-air observations. J. Climate, 8, 550−568, https://doi.org/10.1175/1520-0442(1995)008<0550:CLTFAC>2.0.CO;2.
Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth radiation budget experiment. Science, 243, 57−63, https://doi.org/10.1126/science.243.4887.57.
Remer, L. A., and Coauthors, 2005: The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947−973, https://doi.org/10.1175/JAS3385.1.
Salomonson, V. V., W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, 1989: MODIS: Advanced facility instrument for studies of the Earth as a system. IEEE Trans. Geosci. Remote Sens., 27, 145−153, https://doi.org/10.1109/36.20292.
Schaaf, C. B., and Coauthors, 2002: First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ., 83, 135−148, https://doi.org/10.1016/S0034-4257(02)00091-3.
Sharma, S., R. Vaishnav, M. V. Shukla, P. Kumar, P. Kumar, P. K. Thapliyal, S. Lal, and Y. B. Acharya, 2016: Evaluation of cloud base height measurements from Ceilometer CL31 and MODIS satellite over Ahmedabad, India. Atmospheric Measurement Techniques, 9, 711−719, https://doi.org/10.5194/amt-9-711-2016.
Shupe, M. D., and J. M. Intrieri, 2004: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. Journal of climate, 17, 616−628, https://doi.org/10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2.
Slingo, A., and J. M. Slingo, 1988: The response of a general circulation model to cloud longwave radiative forcing. I: Introduction and initial experiments. Quart. J. Roy. Meteor. Soc., 114, 1027−1062, https://doi.org/10.1002/qj.49711448209.
Stephens, G. L., and Coauthors, 2012: An update on Earth's energy balance in light of the latest global observations. Nature Geoscience, 5, 691−696, https://doi.org/10.1038/NGEO1580.
Thampi, B. V., and R. Roca, 2014: Investigation of negative cloud radiative forcing over the Indian subcontinent and adjacent oceans during the summer monsoon season. Atmospheric Chemistry and Physics, 14, 6739−6758, https://doi.org/10.5194/acp-14-6739-2014.
Trenberth, K. E., J. T. Fasullo, and M. A. Balmaseda, 2014: Earth's energy imbalance. J. Climate, 27, 3129−3144, https://doi.org/10.1175/JCLI-D-13-00294.1.
Verlinden, K. L., and S. P. de Szoek, 2018: Simulating radiative fluxes through southeastern pacific stratocumulus clouds during VOCALS-REx. J. Atmos. Oceanic Technol., 35, 821−836, https://doi.org/10.1175/JTECH-D-17-0169.1.
Viúdez-Mora, A., M. Costa-Surós, J. Calbó, and J. A. González, 2015: Modeling atmospheric longwave radiation at the surface during overcast skies: The role of cloud base height. J. Geophys. Res., 120, 199−214, https://doi.org/10.1002/2014JD022310.
Wang, B., and L. Ho, 2002: Rainy season of the Asian-Pacific summer monsoon. Journal of Climate, 15(4), 386−398.
Wang, F., Y. H. Ding, and Y. Xu, 2007: Cloud and radiation processes simulated by a coupled atmosphere-ocean model. Acta Meteorologica Sinica, 21, 397−408.
Wang, F., and Coauthors, 2015: Multi-sensor quantification of aerosol-induced variability in warm clouds over eastern China. Atmos. Environ., 113, 1−9, https://doi.org/10.1016/j.atmosenv.2015.04.063.
Wang, W.-C., W. Gong, W.-S. Kau, C.-T. Chen, H.-H. Hsu, and C.-H. Tu, 2004: Characteristics of cloud radiation forcing over east China. J. Climate, 17, 845−853, https://doi.org/10.1175/1520-0442(2004)017<0845:COCRFO>2.0.CO;2.
Wang, X. J., and J. R. Key, 2003: Recent trends in Arctic surface, cloud, and radiation properties from space. Science, 299(5613), 1725−1728, https://doi.org/10.1126/science.1078065.
Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s radiant energy system (CERES): An Earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853−868, https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.
Winker, D. M., M. A. Vaughan, A. Omar, Y. X. Hu, K. A. Powell, Z. Y. Liu, W. H. Hunt, and S. A. Young, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 2310−2323, https://doi.org/10.1175/2009JTECHA1281.1.
Xu, Z. Q., H. S. Chen, J. P. Guo, and W. C. Zhang, 2021: Contrasting effect of soil moisture on the daytime boundary layer under different thermodynamic conditions in summer over China. Geophys. Res. Lett., 48, e2020GL090989, https://doi.org/10.1029/2020GL090989.
Yin, J. F., D. H. Wang, H. B. Xu, and G. Q. Zhai, 2015: An investigation into the three-dimensional cloud structure over East Asia from the CALIPSO-GOCCP Data. Science China Earth Sciences, 58, 2236−2248, https://doi.org/10.1007/s11430-015-5205-4.
Yu, R. C., Y. Q. Yu, and M. H. Zhang, 2001: Comparing cloud radiative properties between the eastern China and the Indian monsoon region. Adv. Atmos. Sci., 18, 1090−1102, https://doi.org/10.1007/s00376-001-0025-1.
Zhang, J. Q., H. B. Chen, Z. Q. Li, X. H. Fan, L. Peng, Y. Yu, and M. Cribb, 2010: Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud radar. J. Geophys. Res., 115, D00K30, https://doi.org/10.1029/2010JD014030.
Zhang, L., X. Q. Dong, A. Kennedy, B. K. Xi, and Z. Q. Li, 2017: Evaluation of NASA GISS post-CMIP5 single column model simulated clouds and precipitation using ARM Southern Great Plains observations. Adv. Atmos. Sci., 34, 306−320, https://doi.org/10.1007/s00376-016-5254-4.
Zhang, Y., and Coauthors, 2018: Climatology of cloud-base height from long-term radiosonde measurements in China. Adv. Atmos. Sci., 35, 158−168, https://doi.org/10.1007/s00376-017-7096-0.
Zhang, Y., Q. Zhou, S. S. Lv, S. Z. Jia, F. Tao, D. D. Chen, and J. P. Guo, 2019: Elucidating cloud vertical structures based on three-year Ka-band cloud radar observations from Beijing, China. Atmospheric Research, 222, 88−99, https://doi.org/10.1016/j.atmosres.2019.02.007.
Zhou, C., M. D. Zelinka, and S. A. Klein, 2016: Impact of decadal cloud variations on the Earth’s energy budget. Nature Geoscience, 9, 871−874, https://doi.org/10.1038/ngeo2828.
Zhou, Q., and Coauthors, 2019: Cloud-base and cloud-top heights determined from a ground-based cloud radar in Beijing, China. Atmos. Environ., 201, 381−390, https://doi.org/10.1016/j.atmosenv.2019.01.012.