Archambault, H. M., D. Keyser, L. F. Bosart, C. A. Davis, and J. M. Cordeira, 2015: A composite perspective of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 143(4), 1122−1141, https://doi.org/10.1175/MWR-D-14-00270.1.
Bosart, L. F., B. J. Moore, J. M. Cordeira, and H. M. Archambault, 2017: Interactions of North Pacific tropical, midlatitude, and polar disturbances resulting in linked extreme weather events over North America in October 2007. Mon. Wea. Rev., 145(4), 1245−1273, https://doi.org/10.1175/MWR-D-16-0230.1.
CGTN, 2021: China gears up to protect cultural relics during flood season. https://news.cgtn.com/news/2021-07-21/China-gears-up-to-protect-cultural-relics-during-flood-season-125hC1cth16/index.html.
Chen, G., and Coauthors, 2022: Variability of microphysical characteristics in the "21.7" Henan extremely heavy rainfall event. Science China Earth Sciences, 65, 1861−1878, https://doi.org/10.1007/s11430-022-9972-9.
Davis, C. A., and S. B. Trier, 2007: Mesoscale convective vortices observed during BAMEX. Part I: Kinematic and thermodynamic structure. Mon. Wea. Rev., 135(6), 2029−2049, https://doi.org/10.1175/MWR3398.1.
Davis, C. A., and T. J. Galarneau, 2009: The vertical structure of mesoscale convective vortices. J. Atmos. Sci., 66(3), 686−704, https://doi.org/10.1175/2008JAS2819.1.
Ding, Y. H., 2015: On the study of the unprecedented heavy rainfall in Henan Province during 4−8 August 1975: Review and assessment. Acta Meteorologica Sinica, 73(3), 411−424, https://doi.org/10.11676/qxxb2015.067. (in Chinese with English abstract
Ertel, H., 1942: Ein neuer hydrodynamischer Wirbelsatz. Meteorologische Zeitschrift, 59, 271−281.
Galarneau, T. J., T. M. Hamill, R. M. Dole, and J. Perlwitz, 2012: A multiscale analysis of the extreme weather events over western Russia and northern Pakistan during July 2010. Mon. Wea. Rev., 140(5), 1639−1664, https://doi.org/10.1175/MWR-D-11-00191.1.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049, https://doi.org/10.1002/qj.3803.
Hoskins, B., 1997: A potential vorticity view of synoptic development. Meteorological Applications, 4, 325−334, https://doi.org/10.1017/S1350482797000716.
Hoskins, B., 2015: Potential vorticity and the PV perspective. Adv. Atmos. Sci., 32, 2−9, https://doi.org/10.1007/s00376-014-0007-8.
Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877−946, https://doi.org/10.1002/qj.49711147002.
Houze, R. A. Jr., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50(1), RG1001, https://doi.org/10.1029/2011RG000365.
Hua, S. F., X. Xu, and B. J. Chen, 2020: Influence of multiscale orography on the initiation and maintenance of a precipitating convective system in North China: A case study. J. Geophys. Res.: Atmos., 125(13), e2019JD031731, https://doi.org/10.1029/2019JD031731.
Jiang, Y. Q., Y. Wang, C. H. Chen, H. R. He, and H. Huang, 2019: A numerical study of mesoscale vortex formation in the midlatitudes: The role of moist processes. Adv. Atmos. Sci., 36, 65−78, https://doi.org/10.1007/s00376-018-7234-3.
Lau, K. M., G. J. Yang, and S. H. Shen, 1988: Seasonal and intraseasonal climatology of summer monsoon rainfall over East Asia. Mon. Wea. Rev., 116(1), 18−37, https://doi.org/10.1175/1520-0493(1988)116<0018:SAICOS>2.0.CO;2.
Li, H., and B. Shi, 2021: Death toll from Henan floods rises to 302. China Daily, http://www.chinadaily.com.cn/a/202108/03/WS61087e16a310efa1bd66620d.html.
Meier, F., and P. Knippertz, 2009: Dynamics and predictability of a heavy dry-season precipitation event over West Africa—Sensitivity experiments with a global model. Mon. Wea. Rev., 137(1), 189−206, https://doi.org/10.1175/2008MWR2622.1.
Rolph, G., A. Stein, and B. Stunder, 2017: Real-time environmental applications and display system: READY. Environmental Modelling & Software, 95, 210−228, https://doi.org/10.1016/j.envsoft.2017.06.025.
Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96(12), 2059−2077, https://doi.org/10.1175/BAMS-D-14-00110.1.
Su, A. F., X. N. Lü, L. M. Cui, Z. Li, L. Xi, and H. Li, 2021: The basic observational analysis of "7.20" extreme rainstorm in Zhengzhou. Torrential Rain and Disasters, 40(5), 445−454. (in Chinese with English abstract)
Sun, Y., H. Xiao, H. L. Yang, J. F. Ding, D. H. Fu, X. L. Guo, and L. Feng, 2021: Analysis of dynamic conditions and hydrometeor transport of Zhengzhou superheavy rainfall event on 20 July 2021 based on optical flow field of remote sensing data. Chinese Journal of Atmospheric Sciences, 45(6), 1384−1399, https://doi.org/10.3878/j.issn.1006-9895.2109.21155. (in Chinese with English abstract
Tao, S. Y., and L. X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C. P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60--92.
Wei, P., and Coauthors, 2022: On the key dynamical processes supporting the 21.7 Zhengzhou record-breaking hourly rainfall in China. Adv. Atmos. Sci.,
Wiegand, L., and P. Knippertz, 2014: Equatorward breaking Rossby waves over the North Atlantic and Mediterranean region in the ECMWF operational ensemble prediction system. Quart. J. Roy. Meteor. Soc., 140, 58−71, https://doi.org/10.1002/qj.2112.
Xu, W. H., Y. Q. Ni, X. K. Wang, and X. X. Qiu, 2012: The evolution of a meso-β-scale convective vortex in the Dabie mountain area. Acta Meteorologica Sinica, 26, 597−613, https://doi.org/10.1007/s13351-012-0505-5.
Yang, L., M. F. Liu, J. A. Smith, and F. Q. Tian, 2017: Typhoon Nina and the August 1975 flood over Central China. Journal of Hydrometeorology, 18(2), 451−472, https://doi.org/10.1175/JHM-D-16-0152.1.
Yin, J. F., D. L. Zhang, Y. L. Luo, and R. Y. Ma, 2020: On the extreme rainfall event of 7 May 2017 over the coastal City of Guangzhou. Part I: Impacts of urbanization and orography. Mon. Wea. Rev., 148(3), 955−979, https://doi.org/10.1175/MWR-D-19-0212.1.
Yin, J. F., H. D. Gu, X. D. Liang, M. Yu, J. S. Sun, Y. X. Xie, F. Li, and C. Wu, 2022: A possible dynamic mechanism for rapid production of the extreme hourly rainfall in Zhengzhou City on 20 July 2021. J. Meteor. Res., 36(1), 6−25, https://doi.org/10.1007/s13351-022-1166-7.
Zhang, G. S., J. Y. Mao, Y. M. Liu, and G. X. Wu, 2021a: PV perspective of impacts on downstream extreme rainfall event of a Tibetan Plateau vortex collaborating with a Southwest China vortex. Adv. Atmos. Sci., 38(11), 1835−1851, https://doi.org/10.1007/s00376-021-1027-9.
Zhang, X., H. Yang, X. M. Wang, L. Shen, D. Wang, and H. Li, 2021b: Analysis on characteristic and abnormality of atmospheric circulations of the July 2021 extreme precipitation in Henan. Transactions of Atmospheric Sciences, 44(5), 672−687, https://doi.org/10.13878/j.cnki.dqkxxb.20210907001. (in Chinese with English abstract
Zhao, X. F., and Q. Cai, 2021: Better risk management. China Daily, https://www.chinadaily.com.cn/a/202112/07/WS61aea1a8a310cdd39bc79b62.html.