Che, H. Z., and Coauthors, 2019a: Large contribution of meteorological factors to inter-decadal changes in regional aerosol optical depth. Atmospheric Chemistry and Physics, 19, 10 497−10 523, https://doi.org/10.5194/acp-19-10497-2019.
Che, H. Z., and Coauthors, 2019b: Spatial distribution of aerosol microphysical and optical properties and direct radiative effect from the China Aerosol Remote Sensing Network. Atmospheric Chemistry and Physics, 19, 11 843−11 864, https://doi.org/10.5194/acp-19-11843-2019.
Chen, L., and Coauthors, 2019a: MICS-Asia III: Multi-model comparison and evaluation of aerosol over East Asia. Atmospheric Chemistry and Physics, 19, 11 911−11 937, https://doi.org/10.5194/acp-19-11911-2019.
Chen, S., and Coauthors, 2022a: Source and formation process impact the chemodiversity of rainwater dissolved organic matter along the Yangtze River Basin in summer. Water Research, 211, 118024, https://doi.org/10.1016/j.watres.2021.118024.
Chen, S. Y., and Coauthors, 2019b: Fugitive road dust PM2.5 emissions and their potential health impacts. Environ. Sci. Technol., 53, 8455−8465, https://doi.org/10.1021/acs.est.9b00666.
Chen, X. S., and Coauthors, 2021a: Global–regional nested simulation of particle number concentration by combing microphysical processes with an evolving organic aerosol module. Atmospheric Chemistry and Physics, 21, 9343−9366, https://doi.org/10.5194/acp-21-9343-2021.
Chen, X. R., and Coauthors, 2020a: Field determination of nitrate formation pathway in winter Beijing. Environ. Sci. Technol., 54, 9243−9253, https://doi.org/10.1021/acs.est.0c00972.
Chen, Y., and Coauthors, 2020b: Simultaneous measurements of urban and rural particles in Beijing – Part 2: Case studies of haze events and regional transport. Atmospheric Chemistry and Physics, 20, 9249−9263, https://doi.org/10.5194/acp-20-9249-2020.
Chen, Y., and Coauthors, 2020c: Simultaneous measurements of urban and rural particles in Beijing – Part 1: Chemical composition and mixing state. Atmospheric Chemistry and Physics, 20, 9231−9247, https://doi.org/10.5194/acp-20-9231-2020.
Chen, Y. J., and Coauthors, 2022b: Kilometer-level glyoxal retrieval via satellite for anthropogenic volatile organic compound emission source and secondary organic aerosol formation identification. Remote Sensing of Environment, 270, 112852, https://doi.org/10.1016/j.rse.2021.112852.
Chen, Z., P. Liu, Y. Liu, and Y.-H. Zhang, 2021b: Strong acids or bases displaced by weak acids or bases in aerosols: Reactions driven by the continuous partitioning of volatile products into the gas phase. Accounts of Chemical Research, 54, 3667−3678, https://doi.org/10.1021/acs.accounts.1c00318.
Chen, Z., P. Liu, W. G. Wang, X. Cao, Y.-X. Liu, Y.-H. Zhang, and M. F. Ge, 2022c: Rapid sulfate formation via uncatalyzed autoxidation of sulfur dioxide in aerosol microdroplets. Environ. Sci. Technol., 56, 7637−7646, https://doi.org/10.1021/acs.est.2c00112.
Cheng, Y. F., and Coauthors, 2016: Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Science Advances, 2, e1601530, https://doi.org/10.1126/sciadv.1601530.
Chu, B. W., Q. X. Ma, F. K. Duan, J. Z. Ma, J. K. Jiang, K. B. He, and H. He, 2020: Atmospheric “Haze Chemistry”: Concept and research prospects. Progress in Chemistry, 32, 1−4, https://doi.org/10.7536/PC191230. (in Chinese with English abstract
Cui, X. Y., M. J. Tang, M. J. Wang, and T. Zhu, 2021: Water as a probe for pH measurement in individual particles using micro-Raman spectroscopy. Analytica Chimica Acta, 1186, 339089, https://doi.org/10.1016/j.aca.2021.339089.
Dai, H. B., J. Zhu, H. Liao, J. D. Li, M. X. Liang, Y. Yang, and X. Yue, 2021a: Co-occurrence of ozone and PM2.5 pollution in the Yangtze River Delta over 2013–2019: Spatiotemporal distribution and meteorological conditions. Atmospheric Research, 249, 105363, https://doi.org/10.1016/j.atmosres.2020.105363.
Dai, H. B., and Coauthors, 2023: Composited analyses of the chemical and physical characteristics of co-polluted days by ozone and PM2.5 over 2013−2020 in the Beijing–Tianjin–Hebei region. Atmospheric Chemistry and Physics, 23, 23−39, https://doi.org/10.5194/ACP-23-23-2023.
Dai, H. S., H. Q. Gui, J. S. Zhang, X. L. Wei, Z. B. Xie, J. J. Bian, D.-R. Chen, and J. G. Liu, 2021b: An active RH-controlled dry-ambient aerosol size spectrometer (DAASS) for the accurate measurement of ambient aerosol water content. Journal of Aerosol Science, 158, 105831, https://doi.org/10.1016/j.jaerosci.2021.105831.
Dai, H. S., and Coauthors, 2022: Characteristics of aerosol size distribution and liquid water content under ambient RH conditions in Beijing. Atmos. Environ., 291, 119397, https://doi.org/10.1016/j.atmosenv.2022.119397.
Deng, F. Y., Z. F. Lv, L. J. Qi, X. T. Wang, M. S. Shi, and H. Liu, 2020: A big data approach to improving the vehicle emission inventory in China. Nature Communications, 11, 2801, https://doi.org/10.1038/s41467-020-16579-w.
Ding, A. J., and Coauthors, 2019: Significant reduction of PM2.5 in eastern China due to regional-scale emission control: Evidence from SORPES in 2011–2018. Atmospheric Chemistry and Physics, 19, 11 791−11 801, https://doi.org/10.5194/acp-19-11791-2019.
Fan, M.-Y., and Coauthors, 2020: Roles of sulfur oxidation pathways in the variability in stable sulfur isotopic composition of sulfate aerosols at an urban site in Beijing, China. Environmental Science & Technology Letters, 7, 883−888, https://doi.org/10.1021/acs.estlett.0c00623.
Fan, M.-Y., and Coauthors, 2022: Important role of NO3 radical to nitrate formation aloft in urban Beijing: Insights from triple oxygen isotopes measured at the tower. Environ. Sci. Technol., 56, 6870−6879, https://doi.org/10.1021/acs.est.1c02843.
Gao, J., G. L. Shi, Z. C. Zhang, Y. T. Wei, X. Tian, Y. C. Feng, A. G. Russell, and A. Nenes, 2022a: Targeting atmospheric oxidants can better reduce sulfate aerosol in China: H2O2 aqueous oxidation pathway dominates sulfate formation in haze. Environ. Sci. Technol., 56, 10 608−10 618, https://doi.org/10.1021/acs.est.2c01739.
Gao, J., and Coauthors, 2021a: Impact of formation pathways on secondary inorganic aerosol during haze pollution in Beijing: Quantitative evidence from high-resolution observation and modeling. Geophys. Res. Lett., 48, e2021GL095623, https://doi.org/10.1029/2021GL095623.
Gao, J. Y., and Coauthors, 2022b: Fast climate responses to emission reductions in aerosol and ozone precursors in China during 2013–2017. Atmospheric Chemistry and Physics, 22, 7131−7142, https://doi.org/10.5194/acp-22-7131-2022.
Gao, K., Y. D. Zhang, Y. Y. Liu, M. G. Yang, and T. Zhu, 2021b: Screening of imidazoles in atmospheric aerosol particles using a hybrid targeted and untargeted method based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Analytica Chimica Acta, 1163, 338516, https://doi.org/10.1016/j.aca.2021.338516.
Gao, M., and Coauthors, 2020: Air quality and climate change, Topic 3 of the Model Inter-Comparison Study for Asia Phase III (MICS-Asia III) – Part 2: Aerosol radiative effects and aerosol feedbacks. Atmospheric Chemistry and Physics, 20, 1147−1161, https://doi.org/10.5194/acp-20-1147-2020.
Gao, Y., and Coauthors, 2022e: Impacts of biogenic emissions from urban landscapes on summer ozone and secondary organic aerosol formation in megacities. Science of the Total Environment, 814, 152654, https://doi.org/10.1016/j.scitotenv.2021.152654.
Gao, Y. C., H. Liao, H. S. Chen, B. Zhu, J. L. Hu, X. L. Ge, L. Chen, and J. D. Li, 2022c: Composite analysis of aerosol direct radiative effects on meteorology during wintertime severe haze events in the North China Plain. J. Geophys. Res.: Atmos, 127, e2022JD036902, https://doi.org/10.1029/2022JD036902.
Gao, Y. Q., and Coauthors, 2022d: Unexpected high contribution of residential biomass burning to non-methane organic gases (NMOGs) in the Yangtze River Delta region of China. J. Geophys. Res.: Atmos, 127, e2021JD035050, https://doi.org/10.1029/2021JD035050.
Ge, B., and Coauthors, 2020: Model Inter-Comparison Study for Asia (MICS-Asia) phase III: Multimodel comparison of reactive nitrogen deposition over China. Atmospheric Chemistry and Physics, 20, 10 587−10 610, https://doi.org/10.5194/acp-20-10587-2020.
Gong, C., Y. Wang, H. Liao, P. Y. Wang, J. B. Jin, and Z. W. Han, 2022: Future co-occurrences of hot days and ozone-polluted days over China under scenarios of shared socioeconomic pathways predicted through a machine-learning approach. Earth's Future, 10, e2022EF002671, https://doi.org/10.1029/2022EF002671.
Gu, W. J., and Coauthors, 2017: Investigation of water adsorption and hygroscopicity of atmospherically relevant particles using a commercial vapor sorption analyzer. Atmospheric Measurement Techniques, 10, 3821−3832, https://doi.org/10.5194/amt-10-3821-2017.
Gui, K., and Coauthors, 2022: The significant contribution of small-sized and spherical aerosol particles to the decreasing trend in total aerosol optical depth over land from 2003 to 2018. Engineering, 16, 82−92, https://doi.org/10.1016/j.eng.2021.05.017.
Han, Z., and Coauthors, 2008: MICS-Asia II: Model intercomparison and evaluation of ozone and relevant species. Atmos. Environ., 42, 3491−3509, https://doi.org/10.1016/j.atmosenv.2007.07.031.
He, G. Z., and Coauthors, 2022a: Generation and release of OH radicals from the reaction of H2O with O2 over soot. Angewandte Chemie International Edition, 61, e202201638, https://doi.org/10.1002/anie.202201638.
He, X. J., and Coauthors, 2022b: Volatile organic compounds in wintertime North China Plain: Insights from measurements of proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS). Journal of Environmental Sciences, 114, 98−114, https://doi.org/10.1016/j.jes.2021.08.010.
Huang, R.-J., and Coauthors, 2020a: Water-insoluble organics dominate brown carbon in wintertime urban aerosol of China: Chemical characteristics and optical properties. Environ. Sci. Technol., 54, 7836−7847, https://doi.org/10.1021/acs.est.0c01149.
Huang, R.-J., and Coauthors, 2022: Heterogeneous iodine-organic chemistry fast-tracks marine new particle formation. Proceedings of the National Academy of Sciences of the United States of America, 119, e2201729119, https://doi.org/10.1073/pnas.2201729119.
Huang, X., A. J. Ding, Z. L. Wang, K. Ding, J. Gao, F. H. Chai, and C. B. Fu, 2020b: Amplified transboundary transport of haze by aerosol–boundary layer interaction in China. Nature Geoscience, 13, 428−434, https://doi.org/10.1038/s41561-020-0583-4.
Huang, X., and Coauthors, 2020c: Chemical boundary layer and its impact on air pollution in northern China. Environmental Science & Technology Letters, 7, 826−832, https://doi.org/10.1021/acs.estlett.0c00755.
Huang, X., and Coauthors, 2021: Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. National Science Review, 8, nwaa137, https://doi.org/10.1093/nsr/nwaa137.
Kang, H. H., and Coauthors, 2022: Accurate observation of black and brown carbon in atmospheric fine particles via a versatile aerosol concentration enrichment system (VACES). Science of the Total Environment, 837, 155817, https://doi.org/10.1016/j.scitotenv.2022.155817.
Kang, H. Q., and Coauthors, 2021: Three-dimensional distribution of PM2.5 over the Yangtze River Delta as cold fronts moving through. J. Geophys. Res.: Atmos, 126, e2020JD034035, https://doi.org/10.1029/2020JD034035.
Kong, L., and Coauthors, 2020: Evaluation and uncertainty investigation of the NO2, CO and NH3 modeling over China under the framework of MICS-Asia III. Atmospheric Chemistry and Physics, 20, 181−202, https://doi.org/10.5194/acp-20-181-2020.
Kong, L., and Coauthors, 2021: A 6-year-long (2013–2018) high-resolution air quality reanalysis dataset in China based on the assimilation of surface observations from CNEMC. Earth System Science Data, 13, 529−570, https://doi.org/10.5194/essd-13-529-2021.
Kuai, Y., and Coauthors, 2020: Real-time measurement of the hygroscopic growth dynamics of single aerosol nanoparticles with bloch surface wave microscopy. ACS Nano, 14, 9136−9144, https://doi.org/10.1021/acsnano.0c04513.
Le, T. H., Y. Wang, L. Liu, J. N. Yang, Y. L. Yung, G. H. Li, and J. H. Seinfeld, 2020: Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science, 369, 702−706, https://doi.org/10.1126/science.abb7431.
Lei, L., and Coauthors, 2021: Vertical distributions of primary and secondary aerosols in urban boundary layer: Insights into sources, chemistry, and interaction with meteorology. Environ. Sci. Technol., 55, 4542−4552, https://doi.org/10.1021/acs.est.1c00479.
Li, J., and Coauthors, 2019b: Model evaluation and intercomparison of surface-level ozone and relevant species in East Asia in the context of MICS-Asia Phase III – Part 1: Overview. Atmospheric Chemistry and Physics, 19, 12 993−13 015, https://doi.org/10.5194/acp-19-12993-2019.
Li, J. D., H. Liao, J. L. Hu, and N. Li, 2019a: Severe particulate pollution days in China during 2013–2018 and the associated typical weather patterns in Beijing-Tianjin-Hebei and the Yangtze River Delta regions. Environmental Pollution, 248, 74−81, https://doi.org/10.1016/j.envpol.2019.01.124.
Li, J. D., and Coauthors, 2022a: Winter particulate pollution severity in North China driven by atmospheric teleconnections. Nature Geoscience, 15, 349−355, https://doi.org/10.1038/s41561-022-00933-2.
Li, J. W., Z. W. Han, Y. F. Wu, Z. Xiong, X. G. Xia, J. Li, L. Liang, and R. J. Zhang, 2020a: Aerosol radiative effects and feedbacks on boundary layer meteorology and PM2.5 chemical components during winter haze events over the Beijing-Tianjin-Hebei region. Atmospheric Chemistry and Physics, 20, 8659−8690, https://doi.org/10.5194/acp-20-8659-2020.
Li, K., D. J. Jacob, L. Shen, X. Lu, I. De Smedt, and H. Liao, 2020b: Increases in surface ozone pollution in China from 2013 to 2019: Anthropogenic and meteorological influences. Atmospheric Chemistry and Physics, 20, 11 423−11 433, https://doi.org/10.5194/acp-20-11423-2020.
Li, K., and Coauthors, 2019c: A two-pollutant strategy for improving ozone and particulate air quality in China. Nature Geoscience, 12, 906−910, https://doi.org/10.1038/s41561-019-0464-x.
Li, K., and Coauthors, 2021a: Ozone pollution in the North China Plain spreading into the late-winter haze season. Proceedings of the National Academy of Sciences of the United States of America, 118, e2015797118, https://doi.org/10.1073/pnas.2015797118.
Li, L., and Coauthors, 2022c: Climatology of aerosol component concentrations derived from multi-angular polarimetric POLDER-3 observations using GRASP algorithm. Earth System Science Data, 14, 3439−3469, https://doi.org/10.5194/essd-14-3439-2022.
Li, L.-F., Z. Chen, P. Liu, and Y.-H. Zhang, 2022b: Direct measurement of pH evolution in aerosol microdroplets undergoing ammonium depletion: A surface-enhanced raman spectroscopy approach. Environ. Sci. Technol., 56, 6274−6281, https://doi.org/10.1021/acs.est.1c08626.
Li, M., and Coauthors, 2017a: Anthropogenic emission inventories in China: A review. National Science Review, 4, 834−866, https://doi.org/10.1093/nsr/nwx150.
Li, Q. Y., and Coauthors, 2021b: Halogens enhance haze pollution in China. Environ. Sci. Technol., 55, 13 625−13 637, https://doi.org/10.1021/acs.est.1c01949.
Li, R., and Coauthors, 2022d: Mass fractions, solubility, speciation and isotopic compositions of iron in coal and municipal waste fly ash. Science of the Total Environment, 838, 155974, https://doi.org/10.1016/j.scitotenv.2022.155974.
Li, R., and Coauthors, 2023: Evaluating the effects of contact time and leaching solution on measured solubilities of aerosol trace metals. Applied Geochemistry, 148, 105551, https://doi.org/10.1016/j.apgeochem.2022.105551.
Li, W. J., and Coauthors, 2017b: Air pollution–aerosol interactions produce more bioavailable iron for ocean ecosystems. Science Advances, 3, e1601749, https://doi.org/10.1126/sciadv.1601749.
Li, X. D., and Coauthors, 2022e: Optical and chemical properties and oxidative potential of aqueous-phase products from OH and 3C*-initiated photooxidation of eugenol. Atmospheric Chemistry and Physics, 22, 7793−7814, https://doi.org/10.5194/ACP-22-7793-2022.
Li, Y., and Coauthors, 2022f: Vertically resolved aerosol chemistry in the low boundary layer of Beijing in summer. Environ. Sci. Technol., 56, 9312−9324, https://doi.org/10.1021/acs.est.2c02861.
Lian, X. F., and Coauthors, 2021: Evidence for the formation of imidazole from carbonyls and reduced nitrogen species at the individual particle level in the ambient atmosphere. Environmental Science & Technology Letters, 8, 9−15, https://doi.org/10.1021/acs.estlett.0c00722.
Liu, C., and Coauthors, 2020a: Efficient conversion of NO to NO2 on SO2-aged MgO under atmospheric conditions. Environ. Sci. Technol., 54, 11 848−11 856, https://doi.org/10.1021/acs.est.0c05071.
Liu, C., and Coauthors, 2022a: First Chinese ultraviolet–visible hyperspectral satellite instrument implicating global air quality during the COVID-19 pandemic in early 2020. Light: Science & Applications, 11, 28, https://doi.org/10.1038/S41377-022-00722-X.
Liu, H., S. Kaewunruen, W. N. K. Ahmad, A. Shamsuddin, G. K. Ayetor, J. Hansson, and T. Bräunl, 2021a: A net-zero future for freight. One Earth, 4, 1517−1519, https://doi.org/10.1016/j.oneear.2021.11.001.
Liu, J., and Coauthors, 2016: Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source. Proceedings of the National Academy of Sciences of the United States of America, 113, 7756−7761, https://doi.org/10.1073/pnas.1604537113.
Liu, L., and Coauthors, 2022b: Size-dependent aerosol iron solubility in an urban atmosphere. NPJ Climate and Atmospheric Science, 5, 53, https://doi.org/10.1038/s41612-022-00277-z.
Liu, M. X., and Coauthors, 2019: Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain. Proceedings of the National Academy of Sciences of the United States of America, 116, 7760−7765, https://doi.org/10.1073/pnas.1814880116.
Liu, T. Y., S. L. Clegg, and J. P. D. Abbatt, 2020b: Fast oxidation of sulfur dioxide by hydrogen peroxide in deliquesced aerosol particles. Proceedings of the National Academy of Sciences of the United States of America, 117, 1354−1359, https://doi.org/10.1073/pnas.1916401117.
Liu, X. H., B. Zhu, T. Zhu, and H. Liao, 2022c: The seesaw pattern of PM2.5 interannual anomalies between Beijing-Tianjin-Hebei and Yangtze River Delta across eastern China in winter. Geophys. Res. Lett., 49, e2021GL095878, https://doi.org/10.1029/2021GL095878.
Liu, Y. L., and Coauthors, 2021b: Formation of condensable organic vapors from anthropogenic and biogenic volatile organic compounds (VOCs) is strongly perturbed by NOx in eastern China. Atmospheric Chemistry and Physics, 21, 14 789−14 814, https://doi.org/10.5194/acp-21-14789-2021.
Liu, Z., and Coauthors, 2020c: Size-resolved mixing states and sources of amine-containing particles in the East China Sea. J. Geophys. Res.: Atmos, 125, e2020JD033162, https://doi.org/10.1029/2020JD033162.
Liu, Z., and Coauthors, 2022d: Real-time single particle characterization of oxidized organic aerosols in the East China Sea. npj Climate and Atmospheric Science, 5, 47, https://doi.org/10.1038/s41612-022-00267-1.
Lu, K. D., and Coauthors, 2019: Fast photochemistry in wintertime haze: Consequences for pollution mitigation strategies. Environ. Sci. Technol., 53, 10 676−10 684, https://doi.org/10.1021/acs.est.9b02422.
Ma, M. C., and Coauthors, 2019a: Substantial ozone enhancement over the North China Plain from increased biogenic emissions due to heat waves and land cover in summer 2017. Atmospheric Chemistry and Physics, 19, 12 195−12 207, https://doi.org/10.5194/acp-19-12195-2019.
Ma, M. C., and Coauthors, 2022: Development and assessment of a high-resolution biogenic emission inventory from urban green spaces in China. Environ. Sci. Technol., 56, 175−184, https://doi.org/10.1021/acs.est.1c06170.
Ma, Q. X., T. Wang, C. Liu, H. He, Z. Wang, W. H. Wang, and Y. T. Liang, 2017: SO2 initiates the efficient conversion of NO2 to HONO on MgO surface. Environ. Sci. Technol., 51, 3767−3775, https://doi.org/10.1021/acs.est.6b05724.
Ma, X. F., and Coauthors, 2019b: Winter photochemistry in Beijing: Observation and model simulation of OH and HO2 radicals at an urban site. Science of the Total Environment, 685, 85−95, https://doi.org/10.1016/j.scitotenv.2019.05.329.
Nie, W., and Coauthors, 2022: Secondary organic aerosol formed by condensing anthropogenic vapours over China’s megacities. Nature Geoscience, 15, 255−261, https://doi.org/10.1038/s41561-022-00922-5.
Pan, X. L., and Coauthors, 2019: Synergistic effect of water-soluble species and relative humidity on morphological changes in aerosol particles in the Beijing megacity during severe pollution episodes. Atmospheric Chemistry and Physics, 19, 219−232, https://doi.org/10.5194/acp-19-219-2019.
Peng, C., L. X. D. Chen, and M. J. Tang, 2022a: A database for deliquescence and efflorescence relative humidities of compounds with atmospheric relevance. Fundamental Research, 2, 578−587, https://doi.org/10.1016/j.fmre.2021.11.021.
Peng, S. S., and Coauthors, 2022b: Wetland emission and atmospheric sink changes explain methane growth in 2020. Nature, 612, 477−482, https://doi.org/10.1038/s41586-022-05447-w.
Peng, X., and Coauthors, 2021: An unexpected large continental source of reactive bromine and chlorine with significant impact on wintertime air quality. National Science Review, 8, nwaa304, https://doi.org/10.1093/nsr/nwaa304.
Peng, X., and Coauthors, 2022c: Photodissociation of particulate nitrate as a source of daytime tropospheric Cl2. Nature Communications, 13, 939, https://doi.org/10.1038/s41467-022-28383-9.
Ren, C. H., and Coauthors, 2021: Nonlinear response of nitrate to NOx reduction in China during the COVID-19 pandemic. Atmos. Environ., 264, 118715, https://doi.org/10.1016/j.atmosenv.2021.118715.
Shang, X. N., and Coauthors, 2021a: A semicontinuous study on the ecotoxicity of atmospheric particles using a versatile aerosol concentration enrichment system (VACES): Development and field characterization. Atmospheric Measurement Techniques, 14, 1037−1045, https://doi.org/10.5194/amt-14-1037-2021.
Shang, X. N., and Coauthors, 2021b: PM1.0-nitrite heterogeneous formation demonstrated via a modified versatile aerosol concentration enrichment system coupled with ion chromatography. Environ. Sci. Technol., 55, 9794−9804, https://doi.org/10.1021/acs.est.1c02373.
Shen, H. R., L. Vereecken, S. Kang, I. Pullinen, H. Fuchs, D. F. Zhao, and T. F. Mentel, 2022: Unexpected significance of a minor reaction pathway in daytime formation of biogenic highly oxygenated organic compounds. Science Advances, 8, eabp8702, https://doi.org/10.1126/sciadv.abp8702.
Song, H., K. D. Lu, H. B. Dong, Z. F. Tan, S. Y. Chen, L. M. Zeng, and Y. H. Zhang, 2022a: Reduced aerosol uptake of hydroperoxyl radical may increase the sensitivity of ozone production to volatile organic compounds. Environmental Science & Technology Letters, 9, 22−29, https://doi.org/10.1021/acs.estlett.1c00893.
Song, H., and Coauthors, 2020: Influence of aerosol copper on HO2 uptake: A novel parameterized equation. Atmospheric Chemistry and Physics, 20, 15 835−15 850, https://doi.org/10.5194/ACP-20-15835-2020.
Song, K. X., and Coauthors, 2022b: Observation-based analysis of ozone production sensitivity for two persistent ozone episodes in Guangdong, China. Atmospheric Chemistry and Physics, 22, 8403−8416, https://doi.org/10.5194/acp-22-8403-2022.
Su, S. H., and Coauthors, 2021: High molecular diversity of organic nitrogen in urban snow in North China. Environ. Sci. Technol., 55, 4344−4356, https://doi.org/10.1021/acs.est.0c06851.
Su, S. H., and Coauthors, 2022a: A new structural classification scheme for dissolved organic sulfur in urban snow from North China. Environmental Science & Technology Letters, 9, 366−374, https://doi.org/10.1021/acs.estlett.2c00153.
Su, W. J., and Coauthors, 2022b: First global observation of tropospheric formaldehyde from Chinese GaoFen-5 satellite: Locating source of volatile organic compounds. Environmental Pollution, 297, 118691, https://doi.org/10.1016/j.envpol.2021.118691.
Sun, J. F., and Coauthors, 2021a: Secondary inorganic ions characteristics in PM2.5 along offshore and coastal areas of the megacity Shanghai. J. Geophys. Res.: Atmos, 126, e2021JD035139, https://doi.org/10.1029/2021JD035139.
Sun, W., and Coauthors, 2021b: Measurement report: Molecular characteristics of cloud water in southern China and insights into aqueous-phase processes from Fourier transform ion cyclotron resonance mass spectrometry. Atmospheric Chemistry and Physics, 21, 16 631−16 644, https://doi.org/10.5194/acp-21-16631-2021.
Tan, Z. F., and Coauthors, 2018: Wintertime photochemistry in Beijing: Observations of ROx radical concentrations in the North China Plain during the BEST-ONE campaign. Atmospheric Chemistry and Physics, 18, 12 391−12 411, https://doi.org/10.5194/acp-18-12391-2018.
Tang, M. J., and Coauthors, 2019a: A review of experimental techniques for aerosol hygroscopicity studies. Atmospheric Chemistry and Physics, 19, 12 631−12 686, https://doi.org/10.5194/acp-19-12631-2019.
Tang, M. J., and Coauthors, 2019b: Hygroscopic properties of saline mineral dust from different regions in China: Geographical variations, compositional dependence, and atmospheric implications. J. Geophys. Res.: Atmos, 124, 10 844−10 857, https://doi.org/10.1029/2019JD031128.
Wang, F., G. R. Carmichael, J. Wang, B. Chen, B. Huang, Y. G. Li, Y. J. Yang, and M. Gao, 2022a: Circulation-regulated impacts of aerosol pollution on urban heat island in Beijing. Atmospheric Chemistry and Physics, 22, 13 341−13 353, https://doi.org/10.5194/acp-22-13341-2022.
Wang, F., and Coauthors, 2022b: Machine learning and theoretical analysis release the non-linear relationship among ozone, secondary organic aerosol and volatile organic compounds. Journal of Environmental Sciences, 114, 75−84, https://doi.org/10.1016/j.jes.2021.07.026.
Wang, G. H., and Coauthors, 2016: Persistent sulfate formation from London Fog to Chinese haze. Proceedings of the National Academy of Sciences of the United States of America, 113, 13 630−13 635, https://doi.org/10.1073/pnas.1616540113.
Wang, H. C., and Coauthors, 2022c: Anthropogenic monoterpenes aggravating ozone pollution. National Science Review, 9, nwac103, https://doi.org/10.1093/nsr/nwac103.
Wang, H. C., and Coauthors, 2022d: N2O5 uptake onto saline mineral dust: A potential missing source of tropospheric ClNO2 in inland China. Atmospheric Chemistry and Physics, 22, 1845−1859, https://doi.org/10.5194/ACP-22-1845-2022.
Wang, H. L., and Coauthors, 2020a: Atmospheric processing of nitrophenols and nitrocresols from biomass burning emissions. J. Geophys. Res.: Atmos, 125, e2020JD033401, https://doi.org/10.1029/2020JD033401.
Wang, J. F., and Coauthors, 2020b: Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze. Nature Communications, 11, 2844, https://doi.org/10.1038/s41467-020-16683-x.
Wang, J. F., and Coauthors, 2021a: Aqueous production of secondary organic aerosol from fossil-fuel emissions in winter Beijing haze. Proceedings of the National Academy of Sciences of the United States of America, 118, e2022179118, https://doi.org/10.1073/pnas.2022179118.
Wang, J. Q., J. Gao, F. Che, Y. L. Wang, P. C. Lin, and Y. C. Zhang, 2022e: Decade-long trends in chemical component properties of PM2.5 in Beijing, China (2011−2020). Science of the Total Environment, 832, 154664, https://doi.org/10.1016/J.SCITOTENV.2022.154664.
Wang, M. J., N. Zheng, D. F. Zhao, J. Shang, and T. Zhu, 2021b: Using micro-raman spectroscopy to investigate chemical composition, mixing states, and heterogeneous reactions of individual atmospheric particles. Environ. Sci. Technol., 55, 10 243−10 254, https://doi.org/10.1021/acs.est.1c01242.
Wang, P. Y., and Coauthors, 2022f: North China Plain as a hot spot of ozone pollution exacerbated by extreme high temperatures. Atmospheric Chemistry and Physics, 22, 4705−4719, https://doi.org/10.5194/acp-22-4705-2022.
Wang, Q. Y., and Coauthors, 2019: Wintertime optical properties of primary and secondary brown carbon at a regional site in the North China plain. Environ. Sci. Technol., 53, 12 389−12 397, https://doi.org/10.1021/acs.est.9b03406.
Wang, T., and Coauthors, 2022g: An integrated air quality modeling system coupling regional-urban and street models in Beijing. Urban Climate, 43, 101143, https://doi.org/10.1016/j.uclim.2022.101143.
Wang, T. T., and Coauthors, 2022h: Sulfate formation apportionment during winter haze events in North China. Environ. Sci. Technol., 56, 7771−7778, https://doi.org/10.1021/acs.est.2c02533.
Wang, W. G., and Coauthors, 2021c: Sulfate formation is dominated by manganese-catalyzed oxidation of SO2 on aerosol surfaces during haze events. Nature Communications, 12, 1993, https://doi.org/10.1038/s41467-021-22091-6.
Wang, W. J., and Coauthors, 2022i: Direct observations indicate photodegradable oxygenated volatile organic compounds (OVOCs) as larger contributors to radicals and ozone production in the atmosphere. Atmospheric Chemistry and Physics, 22, 4117−4128, https://doi.org/10.5194/acp-22-4117-2022.
Wang, X.-T., and Coauthors, 2021d: Trade-linked shipping CO2 emissions. Nature Climate Change, 11, 945−951, https://doi.org/10.1038/s41558-021-01176-6.
Wang, X. T., and Coauthors, 2021e: Ship emissions around China under gradually promoted control policies from 2016 to 2019. Atmospheric Chemistry and Physics, 21, 13 835−13 853, https://doi.org/10.5194/acp-21-13835-2021.
Wang, Y. L., and Coauthors, 2021f: Enhanced nitrite production from the aqueous photolysis of nitrate in the presence of vanillic acid and implications for the roles of light-absorbing organics. Environ. Sci. Technol., 55, 15 694−15 704, https://doi.org/10.1021/acs.est.1c04642.
Wang, Y. L., and Coauthors, 2022j: Decay kinetics and absorption changes of methoxyphenols and nitrophenols during nitrate-mediated aqueous photochemical oxidation at 254 and 313 nm. ACS Earth and Space Chemistry, 6, 1115−1125, https://doi.org/10.1021/acsearthspacechem.2c00021.
Wang, Z., and Coauthors, 2008: MICS-Asia II: Model inter-comparison and evaluation of acid deposition. Atmos. Environ., 42, 3528−3542, https://doi.org/10.1016/j.atmosenv.2007.12.071.
Wang, Z. L., X. Huang, and A. J. Ding, 2018: Dome effect of black carbon and its key influencing factors: A one-dimensional modelling study. Atmospheric Chemistry and Physics, 18, 2821−2834, https://doi.org/10.5194/acp-18-2821-2018.
Wei, N. N., B. Fang, W. X. Zhao, C. H. Wang, N. N. Yang, W. J. Zhang, W. D. Chen, and C. Fittschen, 2020: Time-resolved laser-flash photolysis faraday rotation spectrometer: A new tool for total OH reactivity measurement and free radical kinetics research. Analytical Chemistry, 92, 4334−4339, https://doi.org/10.1021/acs.analchem.9b05117.
Wei, X. L., and Coauthors, 2022: Technical note: Real-time diagnosis of the hygroscopic growth micro-dynamics of nanoparticles with Fourier transform infrared spectroscopy. Atmospheric Chemistry and Physics, 22, 3097−3109, https://doi.org/10.5194/acp-22-3097-2022.
Wu, C. H., and Coauthors, 2020a: Measurement report: Important contributions of oxygenated compounds to emissions and chemistry of volatile organic compounds in urban air. Atmospheric Chemistry and Physics, 20, 14 769−14 785, https://doi.org/10.5194/acp-20-14769-2020.
Wu, F., N. Song, T. F. Hu, S. S. H. Ho, J. J. Cao, and D. Z. Zhang, 2023: Surrogate atmospheric dust particles generated from dune soils in laboratory: Comparison with field measurement. Particuology, 72, 29−36, https://doi.org/10.1016/j.partic.2022.02.007.
Wu, F., and Coauthors, 2022: Saltation–sandblasting processes driving enrichment of water-soluble salts in mineral dust. Environmental Science & Technology Letters, 9, 921−928, https://doi.org/10.1021/acs.estlett.2c00652.
Wu, H. J., X. Tang, Z. F. Wang, L. Wu, J. J. Li, W. Wang, W. Y. Yang, and J. Zhu, 2020b: High-spatiotemporal-resolution inverse estimation of CO and NOx emission reductions during emission control periods with a modified ensemble Kalman filter. Atmos. Environ., 236, 117631, https://doi.org/10.1016/j.atmosenv.2020.117631.
Wu, L. Q., X. M. Wang, S. H. Lu, M. Shao, and Z. H. Ling, 2019: Emission inventory of semi-volatile and intermediate-volatility organic compounds and their effects on secondary organic aerosol over the Pearl River Delta region. Atmospheric Chemistry and Physics, 19, 8141−8161, https://doi.org/10.5194/acp-19-8141-2019.
Wu, L. Q., Z. H. Ling, H. Liu, M. Shao, S. H. Lu, L. L. Wu, and X. M. Wang, 2021a: A gridded emission inventory of semi-volatile and intermediate volatility organic compounds in China. Science of the Total Environment, 761, 143295, https://doi.org/10.1016/j.scitotenv.2020.143295.
Wu, L. Q., and Coauthors, 2021b: Roles of semivolatile/intermediate-volatility organic compounds on SOA formation over China during a pollution episode: Sensitivity analysis and implications for future studies. J. Geophys. Res.: Atmos, 126, e2020JD033999, https://doi.org/10.1029/2020JD033999.
Xia, C. Z., C. Liu, Z. N. Cai, F. Zhao, W. J. Su, C. X. Zhang, and Y. Liu, 2021: First sulfur dioxide observations from the environmental trace gases monitoring instrument (EMI) onboard the GeoFen-5 satellite. Science Bulletin, 66, 969−973, https://doi.org/10.1016/j.scib.2021.01.018.
Xia, M., and Coauthors, 2022a: Pollution-Derived Br2 boosts oxidation power of the coastal atmosphere. Environ. Sci. Technol., 56, 12 055−12 065, https://doi.org/10.1021/acs.est.2c02434.
Xia, W. W., and Coauthors, 2022b: Double trouble of air pollution by anthropogenic dust. Environ. Sci. Technol., 56, 761−769, https://doi.org/10.1021/acs.est.1c04779.
Xie, X. D., T. J. Wang, X. Yue, S. Li, B. L. Zhuang, and M. H. Wang, 2020: Effects of atmospheric aerosols on terrestrial carbon fluxes and CO2 concentrations in China. Atmospheric Research, 237, 104859, https://doi.org/10.1016/j.atmosres.2020.104859.
Xie, X. D., T. J. Wang, X. Yue, S. Li, B. L. Zhuang, M. H. Wang, and X. Q. Yang, 2019: Numerical modeling of ozone damage to plants and its effects on atmospheric CO2 in China. Atmos. Environ., 217, 116970, https://doi.org/10.1016/j.atmosenv.2019.116970.
Xu, B. Q., and Coauthors, 2021a: Compound-specific radiocarbon analysis of low molecular weight dicarboxylic acids in ambient aerosols using preparative gas chromatography: Method development. Environmental Science & Technology Letters, 8, 135−141, https://doi.org/10.1021/acs.estlett.0c00887.
Xu, B. Q., and Coauthors, 2022a: Large contribution of fossil-derived components to aqueous secondary organic aerosols in China. Nature Communications, 13, 5115, https://doi.org/10.1038/s41467-022-32863-3.
Xu, L., L. Du, N. T. Tsona, and M. F. Ge, 2021b: Anthropogenic effects on biogenic secondary organic aerosol formation. Adv. Atmos. Sci., 38, 1053−1084, https://doi.org/10.1007/s00376-020-0284-3.
Xu, W., J. Ovadnevaite, K. N. Fossum, C. S. Lin, R. J. Huang, D. Ceburnis, and C. O'Dowd, 2022b: Sea spray as an obscured source for marine cloud nuclei. Nature Geoscience, 15, 282−286, https://doi.org/10.1038/s41561-022-00917-2.
Xu, Z. N., and Coauthors, 2021c: Multifunctional products of isoprene oxidation in polluted atmosphere and their contribution to SOA. Geophys. Res. Lett., 48, e2020GL089276, https://doi.org/10.1029/2020GL089276.
Xue, T., and Coauthors, 2022: New WHO global air quality guidelines help prevent premature deaths in China. National Science Review, 9, nwac055, https://doi.org/10.1093/nsr/nwac055.
Yan, C. Q., S. X. Ma, Q. F. He, X. Ding, Y. Cheng, M. Cui, X. M. Wang, and M. Zheng, 2021: Identification of PM2.5 sources contributing to both Brown carbon and reactive oxygen species generation in winter in Beijing, China. Atmos. Environ., 246, 118069, https://doi.org/10.1016/j.atmosenv.2020.118069.
Yang, H., L. Chen, H. Liao, J. Zhu, W. J. Wang, and X. Li, 2022a: Impacts of aerosol–photolysis interaction and aerosol–radiation feedback on surface-layer ozone in North China during multi-pollutant air pollution episodes. Atmospheric Chemistry and Physics, 22, 4101−4116, https://doi.org/10.5194/acp-22-4101-2022.
Yang, N. N., and Coauthors, 2022b: Optical-feedback cavity-enhanced absorption spectroscopy for OH radical detection at 2.8 µm using a DFB diode laser. Optics Express, 30, 15 238−15 249, https://doi.org/10.1364/OE.456648.
Yang, X. P., and Coauthors, 2021a: Observations and modeling of OH and HO2 radicals in Chengdu, China in summer 2019. Sci. Total Environ., 772, 144829, https://doi.org/10.1016/j.scitotenv.2020.144829.
Yang, Y., and Coauthors, 2022c: Abrupt emissions reductions during COVID-19 contributed to record summer rainfall in China. Nature Communications, 13, 959, https://doi.org/10.1038/s41467-022-28537-9.
Yang, Z. M., L. Du, Y. J. Li, and X. L. Ge, 2022d: Secondary organic aerosol formation from monocyclic aromatic hydrocarbons: Insights from laboratory studies. Environmental Science: Processes & Impacts, 24, 351−379, https://doi.org/10.1039/D1EM00409C.
Yang, Z. M., K. Li, N. T. Tsona, X. Luo, and L. Du, 2023: SO2 enhances aerosol formation from anthropogenic volatile organic compound ozonolysis by producing sulfur-containing compounds. Atmospheric Chemistry and Physics, 23, 417−430, https://doi.org/10.5194/acp-23-417-2023.
Yang, Z. M., L. Xu, N. T. Tsona, J. L. Li, X. Luo, and L. Du, 2021b: SO2 and NH3 emissions enhance organosulfur compounds and fine particle formation from the photooxidation of a typical aromatic hydrocarbon. Atmospheric Chemistry and Physics, 21, 7963−7981, https://doi.org/10.5194/acp-21-7963-2021.
Ye, C. S., and Coauthors, 2021a: Chemical characterization of oxygenated organic compounds in the gas phase and particle phase using iodide CIMS with FIGAERO in urban air. Atmospheric Chemistry and Physics, 21, 8455−8478, https://doi.org/10.5194/acp-21-8455-2021.
Ye, Q., and Coauthors, 2021b: High-resolution modeling of the distribution of surface air pollutants and their intercontinental transport by a global tropospheric atmospheric chemistry source–receptor model (GNAQPMS-SM). Geoscientific Model Development, 14, 7573−7604, https://doi.org/10.5194/gmd-14-7573-2021.
Ye, Q., and Coauthors, 2023: Uncertainties in the simulated intercontinental transport of air pollutants in the springtime from emission and meteorological inputs. Atmos. Environ., 293, 119431, https://doi.org/10.1016/j.atmosenv.2022.119431.
Yuan, W., and Coauthors, 2020: Characterization of the light-absorbing properties, chromophore composition and sources of brown carbon aerosol in Xi'an, northwestern China. Atmospheric Chemistry and Physics, 20, 5129−5144, https://doi.org/10.5194/acp-20-5129-2020.
Zhang, C. X., and Coauthors, 2020a: First observation of tropospheric nitrogen dioxide from the Environmental Trace Gases Monitoring Instrument onboard the GaoFen-5 satellite. Light: Science & Applications, 9, 66, https://doi.org/10.1038/s41377-020-0306-z.
Zhang, G. H., and Coauthors, 2019: Oxalate formation enhanced by Fe-containing particles and environmental implications. Environ. Sci. Technol., 53, 1269−1277, https://doi.org/10.1021/acs.est.8b05280.
Zhang, G. H., and Coauthors, 2020b: High secondary formation of nitrogen-containing organics (NOCs) and its possible link to oxidized organics and ammonium. Atmospheric Chemistry and Physics, 20, 1469−1481, https://doi.org/10.5194/acp-20-1469-2020.
Zhang, G. X., and Coauthors, 2022a: Intercomparison of OH radical measurement in a complex atmosphere in Chengdu, China. Science of the Total Environment, 838, 155924, https://doi.org/10.1016/j.scitotenv.2022.155924.
Zhang, H. H., and Coauthors, 2022b: Abundance and fractional solubility of aerosol iron during winter at a coastal city in northern China: Similarities and contrasts between fine and coarse particles. J. Geophys. Res.: Atmos, 127, e2021JD036070, https://doi.org/10.1029/2021JD036070.
Zhang, P., T. Z. Chen, Q. X. Ma, B. W. Chu, Y. H. Wang, Y. J. Mu, Y. B. Yu, and H. He, 2022c: Diesel soot photooxidation enhances the heterogeneous formation of H2SO4. Nature Communications, 13, 5364, https://doi.org/10.1038/s41467-022-33120-3.
Zhang, W. Q., and Coauthors, 2020c: Different HONO sources for three layers at the urban area of Beijing. Environ. Sci. Technol., 54, 12 870−12 880, https://doi.org/10.1021/acs.est.0c02146.
Zhang, X., and Coauthors, 2022d: Influence of convection on the upper-tropospheric O3 and NOx budget in southeastern China. Atmospheric Chemistry and Physics, 22, 5925−5942, https://doi.org/10.5194/acp-22-5925-2022.
Zhang, Y.-L., and Coauthors, 2022e: A diurnal story of Δ17O(NO3-) in urban Nanjing and its implication for nitrate aerosol formation. npj Climate and Atmospheric Science, 5, 50, https://doi.org/10.1038/s41612-022-00273-3.
Zhang, Z. C., and Coauthors, 2022f: Machine learning combined with the PMF model reveal the synergistic effects of sources and meteorological factors on PM2.5 pollution. Environ. Res., 212, 113322, https://doi.org/10.1016/j.envres.2022.113322.
Zhao, Y., and Coauthors, 2022: Decline in bulk deposition of air pollutants in China lags behind reductions in emissions. Nature Geoscience, 15, 190−195, https://doi.org/10.1038/s41561-022-00899-1.
Zheng, B., and Coauthors, 2020a: Satellite-based estimates of decline and rebound in China's CO2 emissions during COVID-19 pandemic. Science Advances, 6, eabd4998, https://doi.org/10.1126/sciadv.abd4998.
Zheng, B., and Coauthors, 2021: Mapping anthropogenic emissions in China at 1 km spatial resolution and its application in air quality modeling. Science Bulletin, 66, 612−620, https://doi.org/10.1016/j.scib.2020.12.008.
Zheng, M., C. Q. Yan, and T. Zhu, 2020b: Understanding sources of fine particulate matter in China. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378, 20190325, https://doi.org/10.1098/rsta.2019.0325.
Zhong, X., S. C. Liu, R. Liu, X. L. Wang, J. J. Mo, and Y. Z. Li, 2021: Observed trends in clouds and precipitation (1983–2009): Implications for their cause(s). Atmospheric Chemistry and Physics, 21, 4899−4913, https://doi.org/10.5194/acp-21-4899-2021.
Zhou, J. C., and Coauthors, 2020: Simultaneous measurements of the relative-humidity-dependent aerosol light extinction, scattering, absorption, and single-scattering albedo with a humidified cavity-enhanced albedometer. Atmospheric Measurement Techniques, 13, 2623−2634, https://doi.org/10.5194/amt-13-2623-2020.
Zhou, J. C., and Coauthors, 2022: Amplitude-modulated cavity-enhanced absorption spectroscopy with phase-sensitive detection: A new approach applied to the fast and sensitive detection of NO2. Analytical Chemistry, 94, 3368−3375, https://doi.org/10.1021/acs.analchem.1c05484.
Zhu, C.-S., Y. Qu, H. Huang, J. Chen, W.-T. Dai, R.-J. Huang, and J.-J. Cao, 2021a: Black carbon and secondary brown carbon, the dominant light absorption and direct radiative forcing contributors of the atmospheric aerosols over the Tibetan Plateau. Geophys. Res. Lett., 48, e2021GL092524, https://doi.org/10.1029/2021GL092524.
Zhu, J., L. Chen, and H. Liao, 2022: Multi-pollutant air pollution and associated health risks in China from 2014 to 2020. Atmos. Environ., 268, 118829, https://doi.org/10.1016/j.atmosenv.2021.118829.
Zhu, J. L., J. Shang, and T. Zhu, 2021b: A new understanding of the microstructure of soot particles: The reduced graphene oxide-like skeleton and its visible-light driven formation of reactive oxygen species. Environmental Pollution, 270, 116079, https://doi.org/10.1016/j.envpol.2020.116079.
Zhu, J. L., J. Shang, Y. Y. Chen, Y. Kuang, and T. Zhu, 2020a: Reactive oxygen species-related inside-to-outside oxidation of soot particles triggered by visible-light irradiation: Physicochemical property changes and oxidative potential enhancement. Environ. Sci. Technol., 54, 8558−8567, https://doi.org/10.1021/acs.est.0c01150.
Zhu, T., 2005: Urban and regional air pollution complex. Series in Advances in Chemistry: Advances in Environmental Chemistry, S. G. Dai, Ed., Chemical Industry Press, Beijing, 544pp. (in Chinese)
Zhu, T., 2018: Air pollution in China: Scientific challenges and policy implications. National Science Review, 4, 800, https://doi.org/10.1093/nsr/nwx151.
Zhu, T., J. Shang, and D. F. Zhao, 2011: The roles of heterogeneous chemical processes in the formation of an air pollution complex and gray haze. Science China Chemistry, 54, 145−153, https://doi.org/10.1007/s11426-010-4181-y.
Zhu, Y. H., and Coauthors, 2020b: Iron solubility in fine particles associated with secondary acidic aerosols in east China. Environmental Pollution, 264, 114769, https://doi.org/10.1016/j.envpol.2020.114769.
Zuo, P. J., and Coauthors, 2022: Stable iron isotopic signature reveals multiple sources of magnetic particulate matter in the 2021 Beijing sandstorms. Environmental Science & Technology Letters, 9, 299−305, https://doi.org/10.1021/acs.estlett.2c00144.