Barnston, A. G., M. K. Tippett, M. L. L’Heureux, S. H. Li, and D. G. Dewitt, 2012: Skill of real-time seasonal ENSO model predictions during 2002−11: Is our capability increasing. Bull. Amer. Meteor. Soc., 93(5), 631−651, https://doi.org/10.1175/BAMS-D-11-00111.1.
Behringer, D. W., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, AMS 84th Annual Meeting, Washington, Washington State Convention and Trade Center.
Chen, D. K., and M. A. Cane, 2008: El Niño prediction and predictability. J. Comput. Phys., 227(7), 3625−3640, https://doi.org/10.1016/j.jcp.2007.05.014.
Chen, W., X. Q. Lan, L. Wang, and Y. Ma, 2013: The combined effects of the ENSO and the Arctic Oscillation on the winter climate anomalies in East Asia. Chinese Science Bulletin, 58(12), 1355−1362, https://doi.org/10.1007/s11434-012-5654-5.
Chen, Z. Q., J. P. Liu, M. R. Song, Q. H. Yang, and S. M. Xu, 2017: Impacts of assimilating satellite sea ice concentration and thickness on arctic sea ice prediction in the NCEP climate forecast system. J. Climate, 30(21), 8429−8446, https://doi.org/10.1175/JCLI-D-17-0093.1.
Ding, Y. H., Z. Y. Wang, Y. F. Song, and J. Zhang, 2008: Causes of the unprecedented freezing disaster in January 2008 and its possible association with the global warming. Acta Meteorologica Sinica, 66, 809−825, https://doi.org/10.3321/j.issn:0577-6619.2008.05.014. (in Chinese with English abstract
Fang, X. H., and F. Zheng, 2021: Effect of the air–sea coupled system change on the ENSO evolution from boreal spring. Climate Dyn., 57, 109−120, https://doi.org/10.1007/s00382-021-05697-w.
Fang, X. H., F. Zheng, Z. Y. Liu, and J. Zhu, 2019: Decadal modulation of ENSO spring persistence barrier by thermal damping processes in the observation. Geophy. Res. Lett., 46(12), 6892−6899, https://doi.org/10.1029/2019GL082921.
Fang, X. H., and R. H. Xie, 2020: A brief review of ENSO theories and prediction. Science China Earth Sciences, 63(4), 476−491, https://doi.org/10.1007/s11430-019-9539-0.
Fetterer, F., and Coauthors, 2017, updated daily. Sea Ice Index, Version 3. Boulder. NSIDC: National Snow and Ice Data Center. Available from
Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39(6), L06801, https://doi.org/10.1029/2012GL051000.
Gao, H., 2009: China’s snow disaster in 2008, who is the principal player? International Journal of Climatology, 29, 2191−2196, https://doi.org/10.1002/joc.1859.
Ha, K.-J., K.-Y. Heo, S.-S. Lee, K.-S. Yun, and J.-G. Jhun, 2012: Variability in the East Asian monsoon: A review. Meteorological Applications, 19(2), 200−215, https://doi.org/10.1002/met.1320.
Huang, B. Y., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30(20), 8179−8205, https://doi.org/10.1175/JCLI-D-16-0836.1.
Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction skill in coupled ocean-atmosphere models. Climate Dyn., 31(6), 647−664, https://doi.org/10.1007/s00382-008-0397-3.
Jin, F. F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54(7), 811−829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.
Jung, E., J. H. Jeong, S. H. Woo, B. M. Kim, J. H. Yoon, and G. H. Lim, 2020: Impacts of the Arctic-midlatitude teleconnection on wintertime seasonal climate forecasts. Environ. Res. Lett., 15(9), 094045, https://doi.org/10.1088/1748-9326/aba3a3.
Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83(11), 1631−1644, https://doi.org/10.1175/BAMS-83-11-1631.
Kim, H.-J., and S. W. Son, 2020: Eurasian winter temperature change in recent decades and its association with Arctic sea ice loss. Polar Res., 39, 3363, https://doi.org/10.33265/polar.v39.3363.
Kim, J.-W., S.-W. Yeh, and E.-C. Chang, 2014: Combined effect of El Niño-Southern Oscillation and Pacific decadal oscillation on the East Asian winter monsoon. Climate Dyn., 42, 957−971, https://doi.org/10.1007/s00382-013-1730-z.
Kim, J.-W., S. I. An, S. Y. Jun, H. J. Park, and S. W. Yeh, 2017: ENSO and East Asian winter monsoon relationship modulation associated with the anomalous northwest Pacific anticyclone. Climate Dyn., 49, 1157−1179, https://doi.org/10.1007/s00382-016-3371-5.
Kirchmeier-Young, M. C., F. W. Zwiers, and N. P. Gillett, 2017: Attribution of extreme events in arctic sea ice extent. J. Climate, 30(2), 553−571, https://doi.org/10.1175/JCLI-D-16-0412.1.
Kug, J. S., J. H. Jeong, Y. S. Jang, B. M. Kim, C. K. Folland, S. K. Min, and S. W. Son, 2015: Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nature Geoscience, 8(10), 759−762, https://doi.org/10.1038/ngeo2517.
Larson, S. M., and B. P. Kirtman, 2019: Linking preconditioning to extreme ENSO events and reduced ensemble spread. Climate Dyn., 52(12), 7417−7433, https://doi.org/10.1007/s00382-017-3791-x.
Larson, S. M., and K. Pegion, 2020: Do asymmetries in ENSO predictability arise from different recharged states. Climate Dyn., 54(3), 1507−1522, https://doi.org/10.1007/s00382-019-05069-5.
L'Heureux, M. L., A. Kumar, G. D. Bell, M. S. Halpert, and R. W. Higgins, 2008: Role of the Pacific-North American (PNA) pattern in the 2007 Arctic sea ice decline. Geophys. Res. Lett., 35(20), L20701, https://doi.org/10.1029/2008GL035205.
Li, J. P., 2016: Impacts of annular modes on extreme climate events over the East Asian monsoon region. Dynamics and Predictability of Large-Scale, High-Impact Weather and Climate Events, J. P. Li, R. Swinbank, R. Grotjahn, and H. Volkert, Eds., Cambridge University Press, 343−353,
Li, J. P., F. Zheng, C. Sun, J. Feng, and J. Wang, 2019: Pathways of influence of the northern hemisphere mid-high latitudes on East Asian climate: A review. Adv. Atmos. Sci., 36, 902−921, https://doi.org/10.1007/s00376-019-8236-5.
Liu, J. P., J. A. Curry, H. J. Wang, M. R. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proceeding of the National Academy of Sciences of the United States of America, 109(11), 4074−4079, https://doi.org/10.1073/pnas.1114910109.
Maslanik, J., and J. Stroeve, 1999: Near-Real-Time DMSP SSMIS Daily Polar Gridded Sea Ice Concentrations, Version 1. NSIDC-0081.
Masuda, S., J. Philip Matthews, Y. Ishikawa, T. Mochizuki, Y. Tanaka, and T. Awaji, 2015: A new approach to El Niño prediction beyond the spring season. Scientific Reports, 5(1), 16782, https://doi.org/10.1038/srep16782.
Matsumura, S., and Y. Kosaka, 2019: Arctic-Eurasian climate linkage induced by tropical ocean variability. Nature Communications, 10, 3441, https://doi.org/10.1038/s41467-019-11359-7.
McPhaden, M. J., 2003: Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys. Res. Lett., 30(9), 1480, https://doi.org/10.1029/2003GL016872.
Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nature Geoscience, 7, 869−873, https://doi.org/10.1038/ngeo2277.
Parkinson, C. L., and J. C. Comiso, 2013: On the 2012 record low Arctic sea ice cover: Combined impact of preconditioning and an August storm. Geophys. Res. Lett., 40, 1356−1361, https://doi.org/10.1002/grl.50349.
Planton, Y., J. Vialard, E. Guilyardi, M. Lengaigne, and T. Izumo, 2018: Western Pacific Oceanic heat content: A better predictor of La Niña than of El Niño. Geophys. Res. Lett., 45(18), 9824−9833, https://doi.org/10.1029/2018GL079341.
Sung, M.-K., H.-Y. Jang, B.-M. Kim, S.-W. Yeh, Y.-S. Choi, and C. Yoo, 2019: Tropical influence on the North Pacific Oscillation drives winter extremes in North America. Nature Climate Change, 9, 413−418, https://doi.org/10.1038/s41558-019-0461-5.
Tang, Q. H., X. J. Zhang, X. H. Yang, and J. A. Francis, 2013: Cold winter extremes in northern continents linked to Arctic sea ice loss. Environmental Research Letters, 8(1), 014036, https://doi.org/10.1088/1748-9326/8/1/014036.
Wang, L., and W. Chen, 2010: Downward arctic oscillation signal associated with moderate weak stratospheric polar vortex and the cold December 2009. Geophys. Res. Lett., 37, L09707, https://doi.org/10.1029/2010GL042659.
Webster, P. J., 1995: The annual cycle and the predictability of the tropical coupled ocean-atmosphere system. Meteor. Atmos. Phys., 56(1−2), 33−55, https://doi.org/10.1007/BF01022520.
Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118(507), 877−926, https://doi.org/10.1002/qj.49711850705.
Wu, B. Y., and J. Wang, 2002: Winter Arctic Oscillation, Siberian high and East Asian winter monsoon. Geophys. Res. Lett., 29, 1897, https://doi.org/10.1029/2002GL015373.
Wu, B. Y., J. Z. Su, and R. H. Zhang, 2011: Effects of autumn-winter arctic sea ice on winter Siberian high. Chinese Science Bulletin, 56(30), 3220−3228, https://doi.org/10.1007/s11434-011-4696-4.
Yang, C. Y., J. P. Liu, and S. M. Xu, 2020: Seasonal Arctic sea ice prediction using a newly developed fully coupled regional model with the assimilation of satellite sea ice observations. Journal of Advances in Modeling Earth Systems, 12(5), e2019MS001938, https://doi.org/10.1029/2019MS001938.
Yang, S., K.-M. Lau, and K.-M. Kim, 2002: Variations of the East Asian jet stream and Asian-Pacific-American winter climate anomalies. J. Climate, 15(3), 306−325, https://doi.org/10.1175/1520-0442(2002)015<0306:VOTEAJ>2.0.CO;2.
Yuan, Y., C. Y. Li, and S. Yang, 2014: Decadal anomalies of winter precipitation over southern China in association with El Nino and La Niña. J. Meteor. Res., 28(1), 91−110, https://doi.org/10.1007/s13351-014-0106-6.
Zheng, F., and J. Zhu, 2010: Coupled assimilation for an intermediated coupled ENSO prediction model. Ocean Dynamics, 60(5), 1061−1073, https://doi.org/10.1007/s10236-010-0307-1.
Zheng, F., and J. Zhu, 2016: Improved ensemble-mean forecasting of ENSO events by a zero-mean stochastic error model of an intermediate coupled model. Climate Dyn., 47(12), 3901−3915, https://doi.org/10.1007/s00382-016-3048-0.
Zheng, F., and J.-Y. Yu, 2017: Contrasting the skills and biases of deterministic predictions for the two types of El Niño. Adv. Atmos. Sci., 34(12), 1395−1403, https://doi.org/10.1007/s00376-017-6324-y.
Zheng, F., J. Zhu, R. H. Zhang, and G. Q. Zhou, 2006: Ensemble hindcasts of SST anomalies in the tropical Pacific using an intermediate coupled model. Geophys. Res. Lett., 33(19), L19604, https://doi.org/10.1029/2006GL026994.
Zheng, F., J. Zhu, and R. H. Zhang, 2007: Impact of altimetry data on ENSO ensemble initializations and predictions. Geophys. Res. Lett., 34(13), L13611, https://doi.org/10.1029/2007GL030451.
Zheng, F., J. Zhu, H. Wang, and R. H. Zhang, 2009: Ensemble hindcasts of ENSO events over the past 120 years using a large number of ensembles. Adv. Atmos. Sci., 26(2), 359−372, https://doi.org/10.1007/s00376-009-0359-7.
Zheng, F., X.-H. Fang, J. Zhu, J.-Y. Yu, and X.-C. Li, 2016: Modulation of Bjerknes feedback on the decadal variations in ENSO predictability. Geophy. Res. Lett., 43(24), 12 560−12 568, https://doi.org/10.1002/2016GL071636.
Zheng, F., and Coauthors, 2021: The 2020/21 extremely cold winter in China influenced by the synergistic effect of La Niña and warm Arctic. Adv. Atmos. Sci.,
Zuo, J. Q., H. L. Ren, and W. J. Li, 2015: Contrasting impacts of the Arctic Oscillation on surface air temperature anomalies in southern China between early and middle-to-late winter. J. Climate, 28(10), 4015−4026, https://doi.org/10.1175/JCLI-D-14-00687.1.