Basu, S., and Coauthors, 2013: Global CO2 fluxes estimated from GOSAT retrievals of total column CO2. Atmospheric Chemistry and Physics, 13, 8695−8717, https://doi.org/10.5194/acp-13-8695-2013.
Buchwitz, M., O. Schneising, J. P. Burrows, H. Bovensmann, M. Reuter, and J. Notholt, 2007: First direct observation of the atmospheric CO2 year-to-year increase from space. Atmospheric Chemistry and Physics, 7, 4249−4256, https://doi.org/10.5194/acp-7-4249-2007.
Chen, C., and Coauthors, 2019: China and India lead in greening of the world through land-use management. Nature Sustainability, 2, 122−129, https://doi.org/10.1038/s41893-019-0220-7.
Chevallier, F., M. Remaud, C. W. O’Dell, D. Baker, P. Peylin, and A. Cozic, 2019: Objective evaluation of surface- and satellite- driven carbon dioxide atmospheric inversions. Atmos. Chem. Phys., 19, 14233−14251, https://doi.org/10.5194/acp-19-14233-2019.
Crisp, D., and Coauthors, 2017: The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products. Atmospheric Measurement Techniques, 10, 59−81, https://doi.org/10.5194/amt-10-59-2017.
Crowell, S., and Coauthors, 2019: The 2015-2016 carbon cycle as seen from OCO-2 and the global in situ network. Atmospheric Chemistry and Physics, 19, 9797−9831, https://doi.org/10.5194/acp-19-9797-2019.
Deng, F., and Coauthors, 2014: Inferring regional sources and sinks of atmospheric CO2 from GOSAT XCO2 data. Atmospheric Chemistry and Physics, 14, 3703−3727, https://doi.org/10.5194/acp-14-3703-2014.
Feng, L., P. I. Palmer, H. Bösch, and S. Dance, 2009: Estimating surface CO2 fluxes from space-borne CO2 dry air mole fraction observations using an ensemble Kalman Filter. Atmospheric Chemistry and Physics, 9, 2619−2633, https://doi.org/10.5194/acp-9-2619-2009.
Feng, L., P. I. Palmer, Y. Yang, R. M. Yantosca, S. R. Kawa, J.-D. Paris, H. Matsueda, and T. Machida, 2011: Evaluating a 3-D transport model of atmospheric CO2 using ground-based, aircraft, and space-borne data. Atmospheric Chemistry and Physics, 11, 2789−2803, https://doi.org/10.5194/acp-11-2789-2011.
Feng, L., P. I. Palmer, R. J. Parker, N. M. Deutscher, D. G. Feist, R. Kivi, I. Morino, and R. Sussmann, 2016: Estimates of European uptake of CO2 inferred from GOSAT XCO2 retrievals: Sensitivity to measurement bias inside and outside Europe. Atmos. Chem. Phys., 16, 1289−1302, https://doi.org/10.5194/acp-16-1289-2016.
Feng, L., and Coauthors, 2017: Consistent regional fluxes of CH4 and CO2 inferred from GOSAT proxy XCH4: XCO2 retrievals, 2010-2014. Atmospheric Chemistry and Physics, 17, 4781−4797, https://doi.org/10.5194/acp-17-4781-2017.
Gurney, K. R., and Coauthors, 2002: Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature, 415, 626−630, https://doi.org/10.1038/415626a.
Houweling, S., and Coauthors, 2015: An intercomparison of inverse models for estimating sources and sinks of CO2 using GOSAT measurements. J. Geophys. Res., 120, 5253−5266, https://doi.org/10.1002/2014JD022962.
Jiang, F., and Coauthors, 2016: A comprehensive estimate of recent carbon sinks in China using both top-down and bottom-up approaches. Sci. Rep., 6, 22130, https://doi.org/10.1038/srep22130.
Keppel-Aleks, G., P. O. Wennberg, and T. Schneider, 2011: Sources of variations in total column carbon dioxide. Atmospheric Chemistry and Physics, 11, 3581−3593, https://doi.org/10.5194/acp-11-3581-2011.
Kuhlmann, G., G. Broquet, J. Marshall, V. Clément, A. Löscher, Y. Meijer, and D. Brunner, 2019: Detectability of CO2 emission plumes of cities and power plants with the Copernicus Anthropogenic CO2 Monitoring (CO2M) mission. Atmospheric Measurement Techniques, 12, 6695−6719, https://doi.org/10.5194/amt-12-6695-2019.
Kuze, A., H. Suto, M. Nakajima, and T. Hamazaki, 2009: Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl. Opt., 48, 6716−6733, https://doi.org/10.1364/AO.48.006716.
Liu, Y., D. X. Yang, and Z. N. Cai, 2013: A retrieval algorithm for TanSat XCO2 observation: Retrieval experiments using GOSAT data. Chinese Science Bulletin, 58, 1520−1523, https://doi.org/10.1007/s11434-013-5680-y.
Liu, Y., and D. X. Yang, 2016: Advancements in theory of GHG observation from space. Science Bulletin, 61(5), 349−352, https://doi.org/10.1007/s11434-016-1022-1.
Liu, Y., and Coauthors, 2018: The TanSat mission: Preliminary global observations. Science Bulletin, 63(18), 1200−1207, https://doi.org/10.1016/j.scib.2018.08.004.
Maksyutov, S., and Coauthors, 2013: Regional CO2 flux estimates for 2009−2010 based on GOSAT and ground-based CO2 observations. Atmospheric Chemistry and Physics, 13, 9351−9373, https://doi.org/10.5194/acp-13-9351-2013.
Oda, T., and S. Maksyutov, 2011: A very high-resolution (1 km×1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights. Atmospheric Chemistry and Physics, 11, 543−556, https://doi.org/10.5194/acp-11-543-2011.
Olsen, S. C., 2004: Differences between surface and column atmospheric CO2 and implications for carbon cycle research. J. Geophys. Res., 109, D02301, https://doi.org/10.1029/2003JD003968.
Palmer, P., L. Feng, and H. Boesch, 2011: Spatial resolution of tropical terrestrial CO2 fluxes inferred using space-borne column CO2 sampled in different earth orbits: The role of spatial error correlations. Atmospheric Measurement Techniques, 4(9), 1995−2006, https://doi.org/10.5194/amt-4-1995-2011.
Palmer, P. I., L. Feng, D. Baker, F. Chevallier, H. Bösch, and P. Somkuti, 2019: Net carbon emissions from African biosphere dominate pan-tropical atmospheric CO2 signal. Nature Communications, 10, 3344, https://doi.org/10.1038/s41467-019-11097-w.
Peters, W., and Coauthors, 2007: An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proceedings of the National Academy of Sciences of the United States of America, 104(48), 18 925−18 930, https://doi.org/10.1073/pnas.0708986104.
Peylin, P., D. Baker, J. Sarmiento, P. Ciais, and P. Bousquet, 2002: Influence of transport uncertainty on annual mean and seasonal inversions of atmospheric CO2 data. J. Geophys. Res., 107(D19), 4385, https://doi.org/10.1029/2001JD000857.
Peylin, P., and Coauthors, 2013: Global atmospheric carbon budget: Results from an ensemble of atmospheric CO2 inversions. Biogeosciences, 10, 6699−6720, https://doi.org/10.5194/bg-10-6699-2013.
Ran, Y., and X. Li, 2019: TanSat: A new star in global carbon monitoring from China. Scientific Bulletin, 64(5), 284−285, https://doi.org/10.1016/j.scib.2019.01.019.
Reuter, M., and Coauthors, 2017: How much CO2 is taken up by the European terrestrial biosphere? Bull. Amer. Meteor. Soc., 98, 665−671, https://doi.org/10.1175/BAMS-D-15-00310.1.
Saeki, T., and Coauthors, 2013: Inverse modeling of CO2 fluxes using GOSAT data and multi-year ground-based observations. SOLA, 9, 45−50, https://doi.org/10.2151/sola.2013-011.
Scholes, R. J., P. M. S. Monteiro, C. L. Sabine, and J. G. Canadell, 2009: Systematic long-term observations of the global carbon cycle. Trends in Ecology & Evolution, 24, 427−430, https://doi.org/10.1016/j.tree.2009.03.006.
Takahashi, T., and Coauthors, 2009: Corrigendum to “Climatological mean and decadal change in surface ocean PCO2, and net sea-air CO2 flux over the global oceans” [Deep Sea Res. II 56 (2009) 554–577]. Deep Sea Research Part I: Oceanographic Research Papers, 56, 2075−2076, https://doi.org/10.1016/j.dsr.2009.07.007.
van der Werf, G. R., and Coauthors, 2010: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997−2009). Atmospheric Chemistry and Physics, 10, 11 707−11 735, https://doi.org/10.5194/acp-10-11707-2010.
Wang, H., F. Jiang, J. Wang, W. Ju, and J. M. Chen, 2019: Terrestrial ecosystem carbon flux estimated using GOSAT and OCO-2 XCO2 retrievals. Atmos. Chem. Phys., 19, 12067−12082, https://doi.org/10.5194/acp-19-12067-2019.
Wang, J., and Coauthors, 2020: Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature, 586, 720−723, https://doi.org/10.1038/s41586-020-2849-9.
Yang, D. X., Y. Liu, Z. N. Cai, J. B. Deng, J. Wang, and X. Chen, 2015: An advanced carbon dioxide retrieval algorithm for satellite measurements and its application to GOSAT observations. Science Bulletin, 60(23), 2063−2066, https://doi.org/10.1007/s11434-015-0953-2.
Yang, D. X., Y. Liu, Z. N. Cai, X. Chen, L. Yao, and D. R. Lu, 2018: First global carbon dioxide maps produced from TanSat measurements. Advances in Atmospheric Sciences, 35, 621−623, https://doi.org/10.1007/s00376-018-7312-6.
Yang, D. X., and Coauthors, 2020: Toward high precision XCO2 retrievals from TanSat observations: Retrieval improvement and validation against TCCON measurements. J. Geophys. Res., 125, e2020JD032794, https://doi.org/10.1029/2020JD032794.
Yang, D. X., and Coauthors, 2021: A new TanSat XCO2 global product towards climate studies. Advances in Atmospheric Sciences, 38(1), 8−11, https://doi.org/10.1007/s00376-020-0297-y.