Baker, L. H., A. C. Rudd, S. Migliorini, and R. N. Bannister, 2014: Representation of model error in a convective-scale ensemble prediction system. Nonlinear Processes in Geophysics, 21, 19−39, https://doi.org/10.5194/npg-21-19-2014.
Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 3887−3905, https://doi.org/10.1175/MWR-D-10-05013.1.
Beljaars, A. C. M., 1995: The parametrization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255−270, https://doi.org/10.1002/qj.49712152203.
Berner, J., G. J. Shutts, M. Leutbecher, and T. N. Palmer, 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci., 66, 603−626, https://doi.org/10.1175/2008JAS2677.1.
Berner, J., S.-Y. Ha, J. P. Hacker, A. Fournier, and C. Snyder, 2011: Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations. Mon. Wea. Rev, 139, 1972−1995, https://doi.org/10.1175/2010MWR3595.1.
Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 1−3, https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.
Buizza, R., M. Milleer, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 125, 2887−2908, https://doi.org/10.1002/qj.49712556006.
Christensen, H. M., I. M. Moroz, and T. N. Palmer, 2015: Stochastic and perturbed parameter representations of model uncertainty in convection parameterization. J. Atmos. Sci., 72, 2525−2544, https://doi.org/10.1175/JAS-D-14-0250.1.
Clark, A. J., W. A. Gallus, M. Xue, and F. Y. Kong, 2010: Convection-allowing and convection-parameterizing ensemble forecasts of a Mesoscale convective vortex and associated severe weather environment. Wea. Forecasting, 25, 1052−1081, https://doi.org/10.1175/2010WAF2222390.1.
Denis, B, J. Côté, and R. Laprise, 2001: Spectral decomposition of two-dimensional atmospheric fields on limited-area domains using the discrete cosine transform (DCT). Mon. Wea. Rev., 120, 1812−1829.
Duan, W. S., and F. F. Zhou, 2013: Non-linear forcing singular vector of a two-dimensional quasi-geostrophic model. Tellus A, 65, 18452, https://doi.org/10.3402/tellusa.v65i0.18452.
Duan, W. S., B. Tian, and H. Xu, 2014: Simulations of two types of El Niño events by an optimal forcing vector approach. Climate Dyn., 43, 1677−1692, https://doi.org/10.1007/s00382-013-1993-4.
Duan, W. S., P. Zhao, J. Y. Hu, and H. Xu, 2016: The role of nonlinear forcing singular vector tendency error in causing the “Spring Predictability Barrier” for ENSO. Journal of Meteorological Research, 30, 853−866, https://doi.org/10.1007/s13351-016-6011-4.
Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077−3107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
Hacker, J. P., and Coauthors, 2011: The U.S. air force weather agency’s mesoscale ensemble: Scientific description and performance results. Tellus A, 63, 625−641, https://doi.org/10.1111/j.1600-0870.2010.00497.x.
Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559−570, https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.
Hohenegger, C., and C. Schar, 2007: Atmospheric predictability at synoptic versus cloud-resolving scales. Bull. Amer. Meteor. Soc., 88, 1783−1794, https://doi.org/10.1175/bams-88-11-1783.
Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322−2339, https://doi.org/10.1175/1520-0493(1996)124<2322:nblvdi>2.0.co;2.
Hong S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological Society, 42, 129−151.
Houtekamer, P. L., L. Lefaivre, J. Derome, H. Ritchie, and H. L. Mitchell, 1996: A system simulation approach to ensemble prediction. Mon. Wea. Rev., 124, 1225−1242, https://doi.org/10.1175/1520-0493(1996)124<1225:assate>2.0.co;2.
Huo, Z. H., 2016: The application of nonlinear optimal perturbations methods in ensemble forecasting. PhD dissertation, University of Chinese Academy of Sciences, 108 pp. (in Chinese)
Jolliffe, I. T., and D. B. Stephenson, 2012: Introduction. Forecast Verification: A Practitioner’s Guide in Atmospheric Science, 2nd ed., I. T. Jolliffe and D. B. Stephenson, Eds., John Wiley & Sons, 292 pp,
Kennedy, J., and R. Eberhart, 1995: Particle swarm optimization. Proc. International Conf. on Neural Networks, Perth, IEEE, 1942−1948,
Krishnamurti, T. N., C. M. Kishtawal, T. E. Larow, D. R. Bachiochi, Z. Zhang, C. E. Williford, S. Gadgil, and S. Surendran, 1999: Improved Weather and Seasonal Climate Forecasts from Multimodel Superensemble. Science, 285, 1548−1550, https://doi.org/10.1126/science.285.5433.1548.
Li, X. L., M. Charron, L. Spacek, and G. Candille, 2008: A regional ensemble prediction system based on moist targeted singular vectors and stochastic parameter perturbations. Mon. Wea. Rev., 136, 443−462, https://doi.org/10.1175/2007MWR2109.1.
Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289−307, https://doi.org/10.3402/tellusa.v21i3.10086.
Mahrt, L., and M. Ek, 1984: The influence of atmospheric stability on potential evaporation. J. Appl. Meteorol. Climatol., 23, 222−234, https://doi.org/10.1175/1520-0450(1984)023<0222:TIOASO>2.0.CO;2.
Mason, I., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30, 291−303.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663−16682, https://doi.org/10.1029/97JD00237.
Mu, B., S. C. Wen, S. J. Yuan, and H. Y. Li, 2015: PPSO: PCA based particle swarm optimization for solving conditional nonlinear optimal perturbation. Computers & Geosciences, 83, 65−71, https://doi.org/10.1016/j.cageo.2015.06.016.
Müller, M., and Coauthors, 2017: AROME-MetCoOp: A Nordic convective-scale operational weather prediction model. Wea. Forecasting, 32, 609−627, https://doi.org/10.1175/WAF-D-16-0099.1.
Mu, M., W. S. Duan, and B. Wang, 2003: Conditional nonlinear optimal perturbation and its applications. Nonlinear Processes in Geophysics, 10, 493−501, https://doi.org/10.5194/npg-10-493-2003.
Nuissier, O., C. Marsigli, B. Vincendon, A. Hally, F. Bouttier, A. Montani, and T. Paccagnella, 2016: Evaluation of two convection-permitting ensemble systems in the HyMeX Special Observation Period (SOP1) framework. Quart. J. Roy. Meteor. Soc., 142, 404−418, https://doi.org/10.1002/qj.2859.
Palmer, T. N., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. J. Shutts, M. Steinheimer, and A. Weisheimer, 2009: Stochastic parametrization and model uncertainty. Tech. Mem. 598, 42 pp,
Qin, X. H., W. S. Duan, and H. Xu, 2020: Sensitivity to tendency perturbations of tropical cyclone short-range intensity forecasts generated by WRF. Adv. Atmos. Sci., 37, 291−306, https://doi.org/10.1007/s00376-019-9187-6.
Roberts, N., 2008: Assessing the spatial and temporal variation in the skill of precipitation forecasts from an NWP model. Meteorological Applications, 15, 163−169, https://doi.org/10.1002/met.57.
Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 78−97, https://doi.org/10.1175/2007mwr2123.1.
Schwartz, C. S., and R. A. Sobash, 2017: Generating probabilistic forecasts from convection-allowing ensembles using neighborhood approaches: A review and recommendations. Mon. Wea. Rev., 145, 3397−3418, https://doi.org/10.1175/MWR-D-16-0400.1.
Schwartz, C. S., G. S. Romine, R. A. Sobash, K. R. Fossell, and M. L. Weisman, 2015: NCAR’s experimental real-time convection-allowing ensemble prediction system. Wea. Forecasting, 30, 1645−1654, https://doi.org/10.1175/WAF-D-15-0103.1.
Shi, Y., and R. Eberhart, 1998: A modified particle swarm optimizer. Proc. IEEE International Conf. on Evolutionary Computation Proc., Anchorage, IEEE, 69−73,
Shutts, G., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 131, 3079−3102, https://doi.org/10.1256/qj.04.106.
Tao, L. J., and W. S. Duan, 2019: Using a nonlinear forcing singular vector approach to reduce model error effects in ENSO forecasting. Wea. Forecasting, 34, 1321−1342, https://doi.org/10.1175/WAF-D-19-0050.1.
Xu, Z. Z., J. Chen, Z. Jin, H. Q. Li, and F. J. Chen, 2020a: Representing model uncertainty by multi-stochastic physics approaches in the GRAPES ensemble. Adv. Atmos. Sci., 37, 328−346, https://doi.org/10.1007/s00376-020-9171-1.
Xu, Z. Z., J. Chen, Z. Jin, H. Q. Li, and F. J. Chen, 2020b: Assessment of the forecast skill of Multiphysics and Multistochastic methods within the GRAPES regional ensemble prediction system in the East Asian monsoon region. Wea. Forecasting, 35, 1145−1171, https://doi.org/10.1175/WAF-D-19-0021.1.
Zebiak, S. E., and M. A. Cane, 1987: A model El Niño-southern oscillation. Mon. Wea. Rev., 115, 2262−2278, https://doi.org/10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.
Zhang, F., C. Snyder, and R. Rotunno, 2002: Mesoscale predictability of the “surprise” snowstorm of 24−25 January 2000. Mon. Wea. Rev., 130, 1617−1632, https://doi.org/10.1175/1520-0493(2002)130<1617:MPOTSS>2.0.CO;2.
Zhang, F., C. Snyder, and R. Rotunno, 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60, 1173−1185, https://doi.org/10.1175/1520-0469(2003)060<1173:EOMCOM>2.0.CO;2.
Zhang, H. B., J. Chen, X. F. Zhi, Y. Wang, and Y. N. Wang, 2016: Study on multi-scale blending initial condition perturbations for a regional ensemble prediction system. Adv. Atmos. Sci., 32, 1143−1155, https://doi.org/10.1007/s00376-015-4232-6.
Zhuang, X. R., M. Xue, J. Z. Min, Z. M. Kang, N. G. Wu, and F. Y. Kong, 2021: Error growth dynamics within convection-allowing ensemble forecasts over central U.S. regions for days of active convection. Mon. Wea. Rev., 149, 959−977, https://doi.org/10.1175/MWR-D-20-0329.1.