Atlas, D., K. R. Hardy, R. Wexler, and R. J. Boucher, 1963: On the origin of hurricane spiral bands. Geofis. Int., 3, 123−132.
Barnes, G. M., E. J. Zipser, D. Jorgensen, and F. Marks, 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40, 2125−2137, https://doi.org/10.1175/1520-0469(1983)040<2125:MACSOA>2.0.CO;2.
Barnes, G. M., J. F. Gamache, M. A. LeMone, and G. J. Stossmeister, 1991: A convective cell in a hurricane rainband. Mon. Wea. Rev., 119, 776−794, https://doi.org/10.1175/1520-0493(1991)119<0776:ACCIAH>2.0.CO;2.
Bender, M. A., 1997: The effect of relative flow on the asymmetric structure in the interior of hurricanes. J. Atmos. Sci., 54, 703−724, https://doi.org/10.1175/1520-0469(1997)054<0703:TEORFO>2.0.CO;2.
Braun, S. A., and L. G. Wu, 2007: A numerical study of Hurricane Erin (2001). Part II: Shear and the organization of eyewall vertical motion. Mon. Wea. Rev., 135, 1179−1194, https://doi.org/10.1175/MWR3336.1.
Braun, S. A., M. T. Montgomery, and Z. Pu, 2006: High-resolution simulation of Hurricane Bonnie (1998). Part I: The organization of eyewall vertical motion. J. Atmos. Sci., 63, 19−42, https://doi.org/10.1175/JAS3598.1.
Chen, G., C.-C. Wu, and Y.-H. Huang, 2018: The role of near-core convective and stratiform heating/cooling in tropical cyclone structure and intensity. J. Atmos. Sci., 75, 297−326, https://doi.org/10.1175/JAS-D-17-0122.1.
Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366−376, https://doi.org/10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2.
DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 2076−2088, https://doi.org/10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.
Didlake, A. C., and R. A. Houze, 2013: Dynamics of the stratiform sector of a tropical cyclone rainband. J. Atmos. Sci., 70, 1891−1911, https://doi.org/10.1175/jas-d-12-0245.1.
Didlake, A. C., P. D. Reasor, R. F. Rogers, and W.-C. Lee, 2018: Dynamics of the transition from spiral rainbands to a secondary eyewall in Hurricane Earl (2010). J. Atmos. Sci., 75, 2909−2929, https://doi.org/10.1175/JAS-D-17-0348.1.
Donaher, S. L., B. A. Albrecht, M. Fang, and W. Brown, 2013: Wind profiles in tropical cyclone stratiform rainbands over land. Mon. Wea. Rev., 141, 3933−3949, https://doi.org/10.1175/MWR-D-13-00081.1.
Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893−908, https://doi.org/10.1175/2010JCLI3496.1.
Finocchio, P. M., and S. J. Majumdar, 2017: A statistical perspective on wind profiles and vertical wind shear in tropical cyclone environments of the northern hemisphere. Mon. Wea. Rev., 145, 361−378, https://doi.org/10.1175/MWR-D-16-0221.1.
Finocchio, P. M., S. J. Majumdar, D. S. Nolan, and M. Iskandarani, 2016: Idealized tropical cyclone responses to the height and depth of environmental vertical wind shear. Mon. Wea. Rev., 144, 2155−2175, https://doi.org/10.1175/MWR-D-15-0320.1.
Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 2044−2061, https://doi.org/10.1175/1520-0493(1999)127<2044:EOEFUT>2.0.CO;2.
Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 2249−2269, https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.
Franklin, C. N., G. J. Holland, and P. T. May, 2006: Mechanisms for the generation of mesoscale vorticity features in tropical cyclone rainbands. Mon. Wea. Rev., 134, 2649−2669, https://doi.org/10.1175/MWR3222.1.
Franklin, J. L., S. J. Lord, S. E. Feuer, and F. D. Marks, 1993: The kinematic structure of Hurricane Gloria (1985) determined from nested analyses of dropwindsonde and doppler radar data. Mon. Wea. Rev., 121, 2433−2451, https://doi.org/10.1175/1520-0493(1993)121<2433:TKSOHG>2.0.CO;2.
Fu, H., Y. Q. Wang, M. Riemer, and Q. Q. Li, 2019: Effect of unidirectional vertical wind shear on tropical cyclone intensity change—Lower-layer shear versus upper‐layer shear. J. Geophys. Res., 124, 6265−6282, https://doi.org/10.1029/2019JD030586.
Gu, J.-F., Z.-M. Tan, and X. Qiu, 2016: Quadrant-dependent evolution of low-level tangential wind of a tropical cyclone in the shear flow. J. Atmos. Sci., 73, 1159−1177, https://doi.org/10.1175/JAS-D-15-0165.1.
Hazelton, A. T., R. Rogers, and R. E. Hart, 2015: Shear-relative asymmetries in tropical cyclone eyewall slope. Mon. Wea. Rev., 143, 883−903, https://doi.org/10.1175/MWR-D-14-00122.1.
Hence, D. A., and R. A. Houze, 2008: Kinematic structure of convective-scale elements in the rainbands of Hurricanes Katrina and Rita (2005). J. Geophys. Res., 113, https://doi.org/10.1029/2007JD009429.
Hendricks, E. A., M. S. Peng, B. Fu, and T. Li, 2010: Quantifying environmental control on tropical cyclone intensity change. Mon. Wea. Rev., 138, 3243−3271, https://doi.org/10.1175/2010MWR3185.1.
Heymsfield, G. M., J. Simpson, J. Halverson, L. Tian, E. Ritchie, and J. Molinari, 2006: Structure of highly sheared tropical storm Chantal during CAMEX-4. J. Atmos. Sci., 63, 268−287, https://doi.org/10.1175/JAS3602.1.
Houze, R. A., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 2179−2196, https://doi.org/10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2.
Houze, R. A., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293−344, https://doi.org/10.1175/2009MWR2989.1.
Li, Q. Q., and Q. X. Fang, 2018: A numerical study of convective-scale structures in the outer cores of sheared tropical cyclones. Part 1: Updraft traits in different vertical wind shear magnitudes. J. Geophys. Res., 123, 12097−12116, https://doi.org/10.1029/2018JD029022.
Li, Q. Q., Y. H. Duan, H. Yu, and G. Fu, 2008: A high-resolution simulation of Typhoon Rananim (2004) with MM5. Part I: Model verification, inner-core shear, and asymmetric convection. Mon. Wea. Rev., 136, 2488−2506, https://doi.org/10.1175/2007MWR2159.1.
Li, Q. Q., Y. Q. Wang, and Y. H. Duan, 2017: A numerical study of outer rainband formation in a sheared tropical cyclone. J. Atmos. Sci., 74, 203−227, https://doi.org/10.1175/JAS-D-16-0123.1.
Li, Q. Q., and Y. Q. Wang, 2012: A comparison of inner and outer spiral rainbands in a numerically simulated tropical cyclone. Mon. Wea. Rev., 140, 2782−2805, https://doi.org/10.1175/MWR-D-11-00237.1.
Marks, F. D., 1985: Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev., 113, 909−930, https://doi.org/10.1175/1520-0493(1985)113<0909:eotsop>2.0.co;2.
Marks, F. D., 2003: State of the science: radar view of tropical cyclones. Amer. Meteor. Soc., 30, https://doi.org/10.1007/978-1-878220-36-3_3.
Marks, F. D., R. A. Houze, and J. F. Gamache, 1992: Dual-Aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49, 919−942, https://doi.org/10.1175/1520-0469(1992)049<0919:daioti>2.0.co;2.
May, P. T., and G. J. Holland, 1999: The role of potential vorticity generation in tropical cyclone rainbands. J. Atmos. Sci., 56, 1224−1228, https://doi.org/10.1175/1520-0469(1999)056<1224:TROPVG>2.0.CO;2.
Moon, Y., and D. S. Nolan, 2010: The dynamic response of the hurricane wind field to spiral rainband heating. J. Atmos. Sci., 67, 1779−1805, https://doi.org/10.1175/2010JAS3171.1.
Onderlinde, M. J., and D. S. Nolan, 2014: Environmental helicity and its effects on development and intensification of tropical cyclones. J. Atmos. Sci., 71, 4308−4320, https://doi.org/10.1175/JAS-D-14-0085.1.
Paterson, L. A., B. N. Hanstrum, N. E. Davidson, and H. C. Weber, 2005: Influence of environmental vertical wind shear on the intensity of hurricane-strength tropical cyclones in the Australian region. Mon. Wea. Rev., 133, 3644−3660, https://doi.org/10.1175/MWR3041.1.
Qiu, X., and Z.-M. Tan, 2013: The roles of asymmetric inflow forcing induced by outer rainbands in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 70, 953−974, https://doi.org/10.1175/JAS-D-12-084.1.
Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 3−22, https://doi.org/10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.
Reasor, P. D., R. Rogers, and S. Lorsolo, 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne doppler radar composites. Mon. Wea. Rev., 141, 2949−2969, https://doi.org/10.1175/MWR-D-12-00334.1.
Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 3163−3188, https://doi.org/10.5194/acp-10-3163-2010.
Rios-Berrios, R., and R. D. Torn, 2017: Climatological analysis of tropical cyclone intensity changes under moderate vertical wind shear. Mon. Wea. Rev., 145, 1717−1738, https://doi.org/10.1175/MWR-D-16-0350.1.
Rogers, R., 2010: Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. J. Atmos. Sci., 67, 44−70, https://doi.org/10.1175/2009JAS3122.1.
Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463−485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.
Rozoff, C. M., W. H. Schubert, B. D. McNoldy, and J. P. Kossin, 2006: Rapid filamentation zones in intense tropical cyclones. J. Atmos. Sci., 63, 325−340, https://doi.org/10.1175/jas3595.1.
Shu, S. J., Y. Wang, and L. L. Bai, 2013: Insight into the role of lower-layer vertical wind shear in tropical cyclone intensification over the western North Pacific. Acta Meteorol. Sin., 27, 356−363, https://doi.org/10.1007/s13351-013-0310-9.
Tang, B., and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 1817−1830, https://doi.org/10.1175/2010JAS3318.1.
Tang, B., and K. Emanuel, 2012: Sensitivity of tropical cyclone intensity to ventilation in an axisymmetric model. J. Atmos. Sci., 69, 2394−2413, https://doi.org/10.1175/JAS-D-11-0232.1.
Uhlhorn, E. W., B. W. Klotz, T. Vukicevic, P. D. Reasor, and R. F. Rogers, 2014: Observed hurricane wind speed asymmetries and relationships to motion and environmental shear. Mon. Wea. Rev., 142, 1290−1311, https://doi.org/10.1175/MWR-D-13-00249.1.
Velden, C. S., and J. Sears, 2014: Computing deep-tropospheric vertical wind shear analyses for tropical cyclone applications: Does the methodology matter? Wea. Forecasting, 29, 1169−1180, https://doi.org/10.1175/WAF-D-13-00147.1.
Wang, Y. Q, 2001: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part I: Model description and control experiment. Mon. Wea. Rev., 129, 1370−1394, https://doi.org/10.1175/1520-0493(2001)129<1370:AESOTC>2.0.CO;2.
Wang, Y. Q., 2007: Structure and formation of an annular hurricane simulated in a fully compressible, nonhydrostatic model—TCM4*. J. Atmos. Sci., 65, 1505−1527, https://doi.org/10.1175/2007JAS2528.1.
Wang, Y. Q., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 1250−1273, https://doi.org/10.1175/2008JAS2737.1.
Wang, Y. Q., Y. Rao, Z.-M. Tan, and D. Schönemann, 2015: A statistical analysis of the effects of vertical wind shear on tropical cyclone intensity change over the Western North Pacific. Mon. Wea. Rev., 143, 3434−3453, https://doi.org/10.1175/MWR-D-15-0049.1.
Willoughby, H. E., F. D. Marks Jr., and R. J. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41, 3189−3211, https://doi.org/10.1175/1520-0469(1984)041<3189:SAMCBI>2.0.CO;2.
Wong, M. L. M., and J. C. L. Chan, 2004: Tropical cyclone intensity in vertical wind shear. J. Atmos. Sci., 61, 1859−1876, https://doi.org/10.1175/1520-0469(2004)061<1859:TCIIVW>2.0.CO;2.
Wu, L. G., S. A. Braun, J. Halverson, and G. Heymsfield, 2006: A numerical study of Hurricane Erin (2001). Part I: Model verification and storm evolution. J. Atmos. Sci., 63, 65−86, https://doi.org/10.1175/JAS3597.1.
Xu, Y. M., and Y. Q. Wang, 2013: On the initial development of asymmetric vertical motion and horizontal relative flow in a mature tropical cyclone embedded in environmental vertical shear. J. Atmos. Sci., 70, 3471−3491, https://doi.org/10.1175/JAS-D-12-0335.1.
Yu, C.-L., and A. C. Didlake, 2019: Impact of stratiform rainband heating on the tropical cyclone wind field in idealized simulations. J. Atmos. Sci., 76, 2443−2462, https://doi.org/10.1175/JAS-D-18-0335.1.
Yu, C.-K., C.-Y. Lin, L.-W. Cheng, J.-S. Luo, C.-C. Wu, and Y. Chen, 2018: The degree of prevalence of similarity between outer tropical cyclone rainbands and squall lines. Sci. Rep., 8, https://doi.org/10.1038/s41598-018-26553-8.
Yuter, S. E., and R. A. Houze, 1995a: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 1941−1963, https://doi.org/10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.
Yuter, S. E., and R. A. Houze, 1995b: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part III: Vertical Mass Transport, Mass Divergence, and Synthesis. Mon. Wea. Rev., 123, 1964−1983, https://doi.org/10.1175/1520-0493(1995)123<1964:TDKAME>2.0.CO;2.
Zeng, Z. H., Y. Q. Wang, and L. S. Chen, 2010: A statistical analysis of vertical shear effect on tropical cyclone intensity change in the North Atlantic. Geophys. Res. Lett., 37, L02802, https://doi.org/10.1029/2009GL041788.