al-Jabburi, M. H. K., 2010: Determining of neutral and unstable wind profiles over Baghdad city. Iraqi Journal of Science, 51(2), 343−350.
Ala-Könni, J., K.-M. Kohonen, M. Leppäranta, and I. Mammarella, 2022: Validation of turbulent heat transfer models against eddy covariance flux measurements over a seasonally ice-covered lake. Geoscientific Model Development, 15(12), 4739−4755, https://doi.org/10.5194/gmd-15-4739-2022.
Andreas, E. L., 1987: A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice. Bound.-Layer Meteorol., 38(1−2), 159−184, https://doi.org/10.1007/BF00121562.
Andreas, E. L., 2002: Parameterizing scalar transfer over snow and ice: A review. Journal of Hydrometeorology, 3(4), 417−432, https://doi.org/10.1175/1525-7541(2002)003<0417:Pstosa>2.0.Co;2.
Andreas, E. L., 2011: A relationship between the aerodynamic and physical roughness of winter sea ice. Quart. J. Roy. Meteor. Soc., 137(659), 1581−1588, https://doi.org/10.1002/qj.842.
Andreas, E. L., and K. J. Claffey, 1995: Air-ice drag coefficients in the western Weddell Sea: 1. Values deduced from profile measurements. J. Geophys. Res., 100(C3), 4821−4831, https://doi.org/10.1029/94JC02015.
Andreas, E. L., R. E. Jordan, and A. P. Makshtas, 2005: Parameterizing turbulent exchange over sea ice: The Ice Station Weddell results. Bound.-Layer Meteorol., 114(2), 439−460, https://doi.org/10.1007/s10546-004-1414-7.
Andreas, E. L., P. O. G. Persson, A. A. Grachev, R. E. Jordan, T. W. Horst, P. S. Guest, and C. W. Fairall, 2010: Parameterizing turbulent exchange over sea ice in winter. Journal of Hydrometeorology, 11(1), 87−104, https://doi.org/10.1175/2009JHM1102.1.
Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes. Geoscientific Model Development, 4, 677−699, https://doi.org/10.5194/gmd-4-677-2011.
Brunke, M. A., M. Y. Zhou, X. B. Zeng, and E. L. Andreas, 2006: An intercomparison of bulk aerodynamic algorithms used over sea ice with data from the Surface Heat Budget for the Arctic Ocean (SHEBA) experiment. J. Geophys. Res., 111(C9), C09001, https://doi.org/10.1029/2005JC002907.
Burba, G., 2013: Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates. LI-COR Biosciences, https://doi.org/10.13140/RG.2.1.4247.8561.
Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28(2), 181−189, https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.
Cassano, J. J., T. R. Parish, and J. C. King, 2001: Evaluation of turbulent surface flux parameterizations for the stable surface layer over Halley, Antarctica. Mon. Wea. Rev., 129(1), 26−46, https://doi.org/10.1175/1520-0493(2001)129<0026:EOTSFP>2.0.CO;2.
Chenge, Y., and W. Brutsaert, 2005: Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer. Bound.-Layer Meteorol., 114(3), 519−538, https://doi.org/10.1007/s10546-004-1425-4.
Dyer, A. J., 1974: A review of flux-profile relationships. Bound.-Layer Meteorol., 7, 363−372, https://doi.org/10.1007/BF00240838.
Foken, T., R. Leuning, S. R. Oncley, M. Mauder, and M. Aubinet, 2012: Corrections and data quality control. Eddy Covariance: A Practical Guide to Measurement and Data Analysis, M. Aubinet, T. Vesala, and D. Papale, Eds., Springer, 85−131, https://doi.org/10.1007/978-94-007-2351-1_4.
Giles, K. A., S. W. Laxon, and A. L. Ridout, 2008: Circumpolar thinning of Arctic sea ice following the 2007 record ice extent minimum. Geophys. Res. Lett., 35(22), L22502, https://doi.org/10.1029/2008GL035710.
Grachev, A. A., E. L. Andreas, C. W. Fairall, P. S. Guest, and P. O. G. Persson, 2007: SHEBA flux–profile relationships in the stable atmospheric boundary layer. Bound.-Layer Meteorol., 124(3), 315−333, https://doi.org/10.1007/s10546-007-9177-6.
Grachev, A. A., L. Bariteau, C. W. Fairall, J. E. Hare, D. Helmig, J. Hueber, and E. K. Lang, 2011: Turbulent fluxes and transfer of trace gases from ship-based measurements during TexAQS 2006. J. Geophys. Res., 116, D13110, https://doi.org/10.1029/2010JD015502.
Grachev, A. A., E. L. Andreas, C. W. Fairall, P. S. Guest, and P. O. G. Persson, 2013: The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer. Bound.-Layer Meteorol., 147(1), 51−82, https://doi.org/10.1007/s10546-012-9771-0.
Gryanik, V. M., and C. Lüpkes, 2022: A package of momentum and heat transfer coefficients for the stable surface layer extended by new coefficients over sea ice. Bound.-Layer Meteorol., https://doi.org/10.1007/s10546-022-00730-9.
Gryanik, V. M., C. Lüpkes, A. Grachev, and D. Sidorenko, 2020: New modified and extended stability functions for the stable boundary layer based on SHEBA and parametrizations of bulk transfer coefficients for climate models. J. Atmos. Sci., 77(8), 2687−2716, https://doi.org/10.1175/JAS-D-19-0255.1.
Guest, P. S., and K. L. Davidson, 1991: The aerodynamic roughness of different types of sea ice. J. Geophys. Res., 96, 4709−4721, https://doi.org/10.1029/90JC02261.
Guo, X. F., K. Yang, L. Zhao, W. Yang, S. H. Li, M. L. Zhu, T. D. Yao, and Y. Y. Chen, 2011: Critical evaluation of scalar roughness length parametrizations over a melting valley glacier. Bound.-Layer Meteorol., 139, 307−332, https://doi.org/10.1007/s10546-010-9586-9.
Holtslag, A. A. M., and H. A. R. De Bruin, 1988: Applied modeling of the nighttime surface energy balance over land. J. Appl. Meteorol., 27(6), 689−704, https://doi.org/10.1175/1520-0450(1988)027<0689:AMOTNS>2.0.CO;2.
Hu, X. L., L. S. Shi, L. Lin, and V. Magliulo, 2020: Improving surface roughness lengths estimation using machine learning algorithms. Agricultural and Forest Meteorology, 287, 107956, https://doi.org/10.1016/j.agrformet.2020.107956.
Kader, B. A., and A. M. Yaglom, 1990: Mean fields and fluctuation moments in unstably stratified turbulent boundary layers. Journal of Fluid Mechanics, 212, 637−662, https://doi.org/10.1017/S0022112090002129.
Kim, J., P. Moin, and R. Moser, 1987: Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 177, 133−166, https://doi.org/10.1017/S0022112087000892.
King, J. C., 1990: Some measurements of turbulence over an antarctic ice shelf. Quart. J. Roy. Meteor. Soc., 116(492), 379−400, https://doi.org/10.1002/qj.49711649208.
King, J. C., and P. S. Anderson, 1994: Heat and water vapour fluxes and scalar roughness lengths over an Antarctic ice shelf. Bound.-Layer Meteorol., 69(1−2), 101−121, https://doi.org/10.1007/BF00713297.
Liu, C. W., Y. B. Li, Q. H. Yang, L. L. Wang, X. Q. Wang, S. M. Li, and Z. Q. Gao, 2019: On the surface fluxes characteristics and roughness lengths at Zhongshan station, Antarctica. International Journal of Digital Earth, 12(8), 878−892, https://doi.org/10.1080/17538947.2017.1335804.
Liu, C. W., and Coauthors, 2020a: Measurements of turbulence transfer in the near-surface layer over the Antarctic sea-ice surface from April through November in 2016. Annals of Glaciology, 61(82), 12−23, https://doi.org/10.1017/aog.2019.48.
Liu, C. W., Y. B. Li, Z. Q. Gao, H. S. Zhang, T. W. Wu, Y. X. Lu, and X. Y. Zhang, 2020b: Improvement of drag coefficient calculation under near-neutral conditions in light winds over land. J. Geophys. Res., 125(24), e2020JD033472, https://doi.org/10.1029/2020JD033472.
Liu, C. W., G. H. Hao, Y. B. Li, J. C. Zhao, R. B. Lei, B. Cheng, Z. Q. Gao, and Q. H. Yang, 2022: The sensitivity of parameterization schemes in thermodynamic modeling of the landfast sea ice in Prydz Bay, East Antarctica. J. Glaciol., 68(271), 961−976, https://doi.org/10.1017/jog.2022.8.
Louis, J.-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteorol., 17, 187−202, https://doi.org/10.1007/BF00117978.
Lu, Y. X., M. Y. Zhou, and T. W. Wu, 2013: Validation of parameterizations for the surface turbulent fluxes over sea ice with CHINARE 2010 and SHEBA data. Polar Research, 32, 20818, https://doi.org/10.3402/polar.v32i0.20818.
Mahrt, L., J. L. Sun, and D. Stauffer, 2015: Dependence of turbulent velocities on wind speed and stratification. Bound.-Layer Meteorol., 155(1), 55−71, https://doi.org/10.1007/s10546-014-9992-5.
Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the Surface Layer of the Atmosphere. Tr. Akad. Nauk SSSR Geophiz. Inst., 24(151), 163−187.
Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116(D12), D12109, https://doi.org/10.1029/2010JD015139.
Overland, J. E., 1985: Atmospheric boundary layer structure and drag coefficients over sea ice. J. Geophys. Res., 90(C5), 9029−9049, https://doi.org/10.1029/JC090iC05p09029.
Patil, M. N., R. T. Waghmare, T. Dharmaraj, G. R. Chinthalu, D. Siingh, and G. S. Meena, 2016: The influence of wind speed on surface layer stability and turbulent fluxes over southern Indian peninsula station. Journal of Earth System Science, 125(7), 1399−1411, https://doi.org/10.1007/s12040-016-0735-5.
Paulson, C. A., 1970: The Mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteorol., 9(6), 857−861, https://doi.org/10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2.
Radić, V., B. Menounos, J. Shea, N. Fitzpatrick, M. A. Tessema, and S. J. Déry, 2017: Evaluation of different methods to model near-surface turbulent fluxes for a mountain glacier in the Cariboo Mountains, BC, Canada. The Cryosphere, 11(6), 2897−2918, https://doi.org/10.5194/tc-11-2897-2017.
Rigden, A., D. Li, and G. Salvucci, 2018: Dependence of thermal roughness length on friction velocity across land cover types: A synthesis analysis using AmeriFlux data. Agricultural and Forest Meteorology, 249, 512−519, https://doi.org/10.1016/j.agrformet.2017.06.003.
Sharan, M., and P. Kumar, 2011: Estimation of upper bounds for the applicability of non-linear similarity functions for non-dimensional wind and temperature profiles in the surface layer in very stable conditions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 467, 473−494, https://doi.org/10.1098/rspa.2010.0220.
Sicart, J. E., M. Litt, W. Helgason, V. B. Tahar, and T. Chaperon, 2014: A study of the atmospheric surface layer and roughness lengths on the high-altitude tropical Zongo glacier, Bolivia. J. Geophys. Res., 119, 3793−3808, https://doi.org/10.1002/2013JD020615.
Smeets, C. J. P. P., and M. R. van den Broeke, 2008a: Temporal and spatial variations of the aerodynamic roughness length in the ablation zone of the Greenland ice sheet. Bound.-Layer Meteorol., 128(3), 315−338, https://doi.org/10.1007/s10546-008-9291-0.
Smeets, C. J. P. P., and M. R. van den Broeke, 2008b: The parameterisation of scalar transfer over rough ice. Bound.-Layer Meteorol., 128(3), 339−355, https://doi.org/10.1007/s10546-008-9292-z.
Sorbjan, Z., 2006: Local structure of turbulence in stably stratified boundary layers. J. Atmos. Sci., 63, 1526−1537, https://doi.org/10.1175/JAS3704.1.
Stössel, F., M. Guala, C. Fierz, C. Manes, and M. Lehning, 2010: Micrometeorological and morphological observations of surface hoar dynamics on a mountain snow cover. Water Resour. Res., 46, W04511, https://doi.org/10.1029/2009WR008198.
Stull, R. B., 1988: Some mathematical & conceptual tools: Part 1. Statistics. An Introduction to Boundary Layer Meteorology, R. B. Stull, Ed., Springer, 29−74, https://doi.org/10.1007/978-94-009-3027-8_2
Sun, J. L., 1999: Diurnal variations of thermal roughness height over a grassland. Bound.-Layer Meteorol., 92, 407−427, https://doi.org/10.1023/A:1002071421362.
Sun, J. L., and Coauthors, 2004: Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Bound.-Layer Meteorol., 110(2), 255−279, https://doi.org/10.1023/A:1026097926169.
van den Broeke, M., D. van As, C. Reijmer, and R. van de Wal, 2005: Sensible heat exchange at the Antarctic snow surface: A study with automatic weather stations. International Journal of Climatology, 25(8), 1081−1101, https://doi.org/10.1002/joc.1152.
Vignon, E., C. Genthon, H. Barral, C. Amory, G. Picard, H. Gallée, G. Casasanta, and S. Argentini, 2017: Momentum- and heat-flux parametrization at dome C, Antarctica: A sensitivity study. Bound.-Layer Meteorol., 162(2), 341−367, https://doi.org/10.1007/s10546-016-0192-3.
Walden, V. P., S. R. Hudson, L. Cohen, S. Y. Murphy, and M. A. Granskog, 2017: Atmospheric components of the surface energy budget over young sea ice: Results from the N-ICE2015 campaign. J. Geophys. Res., 122, 8427−8446, https://doi.org/10.1002/2016JD026091.
Wei, W., H. S. Zhang, B. G. Wu, Y. X. Huang, X. H. Cai, Y. Song, and J. D. Li, 2018: Intermittent turbulence contributes to vertical dispersion of PM2.5 in the North China Plain: Cases from Tianjin. Atmospheric Chemistry and Physics, 18, 12 953−12 967, https://doi.org/10.5194/acp-18-12953-2018.
Wu, T. W., 2012: A mass-flux cumulus parameterization scheme for large-scale models: Description and test with observations. Climate Dyn., 38(3), 725−744, https://doi.org/10.1007/s00382-011-0995-3.
Wu, T. W., R. C. Yu, and F. Zhang, 2008: A modified dynamic framework for the atmospheric spectral model and its application. J. Atmos. Sci., 65(7), 2235−2253, https://doi.org/10.1175/2007JAS2514.1.
Wu, T. W., and Coauthors, 2019: The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geoscientific Model Development, 12(4), 1573−1600, https://doi.org/10.5194/gmd-12-1573-2019.
Xin, X.-G., T.-W. Wu, and J. Zhang, 2013: Introduction of CMIP5 experiments carried out with the climate system models of Beijing Climate Center. Advances in Climate Change Research, 4(1), 41−49, https://doi.org/10.3724/SP.J.1248.2013.041.
Yang, K., and Coauthors, 2008: Turbulent flux transfer over bare-soil surfaces: Characteristics and parameterization. J. Appl. Meteorol., 47(1), 276−290, https://doi.org/10.1175/2007JAMC1547.1.
Zeng, X. B., and R. E. Dickinson, 1998: Effect of surface sublayer on surface skin temperature and fluxes. J. Climate, 11(4), 537−550, https://doi.org/10.1175/1520-0442(1998)011<0537:EOSSOS>2.0.CO;2.
Zeng, X. B., M. Zhao, and R. E. Dickinson, 1998: Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J. Climate, 11(10), 2628−2644, https://doi.org/10.1175/1520-0442(1998)011<2628:IOBAAF>2.0.CO;2.
Zhang, Y.-M., M.-R. Song, C.-M. Dong, and J.-P. Liu, 2021: Modeling turbulent heat fluxes over Arctic sea ice using a maximum-entropy-production approach. Advances in Climate Change Research, 12(4), 517−526, https://doi.org/10.1016/j.accre.2021.07.003.
Zhao, J. C., J. J. Cheng, Z. X. Tian, X. P. Han, H. Shen, G. H. Hao, H. L. Guo, and Q. Shu, 2022: Snow and ice thicknesses derived from Fast Ice Prediction System Version 2.0 (FIPS V2.0) in Prydz Bay, East Antarctica: Comparison with in-situ observations. Big Earth Data, 6, 492−503, https://doi.org/10.1080/20964471.2021.1981196.
Zhu, P., and J. Furst, 2013: On the parameterization of surface momentum transport via drag coefficient in low-wind conditions. Geophys. Res. Lett., 40(11), 2824−2828, https://doi.org/10.1002/grl.50518.
Zilitinkevich, S. S., 1970: Dynamics of the Atmospheric Boundary Layer. Gidrometeoizdat, 292 pp.
Zilitinkevich, S. S., 1995: Non-local turbulent transport pollution dispersion aspects of coherent structure of convective flows. Air Pollution III, Air Pollution Theory and Simulation, H. Power, N. Moussiopoulos, and C. A. Brebbia, Eds., Computational Mechanics Publications, Southampton, Boston, 53−60.