An, J. L., J. X. Wang, Y. X. Zhang, and B. Zhu, 2017: Source apportionment of volatile organic compounds in an urban environment at the Yangtze River Delta, China. Archives of Environmental Contamination and Toxicology, 72(3), 335−348, https://doi.org/10.1007/s00244-017-0371-3.
Borbon, A., and Coauthors, 2013: Emission ratios of anthropogenic volatile organic compounds in northern mid-latitude megacities: Observations versus emission inventories in Los Angeles and Paris. J. Geophys. Res., 118(4), 2041−2057, https://doi.org/10.1002/jgrd.50059.
Bruno, P., M. Caselli, G. de Gennaro, and A. Traini, 2001: Source apportionment of gaseous atmospheric pollutants by means of an absolute principal component scores (APCS) receptor model. Fresenius' Journal of Analytical Chemistry, 371(8), 1119−1123, https://doi.org/10.1007/s002160101084.
Carter, W. P. L., J. A. Pierce, D. M. Luo, and I. L. Malkina, 1995: Environmental chamber study of maximum incremental reactivities of volatile organic compounds. Atmos. Environ., 29(18), 2499−2511, https://doi.org/10.1016/1352-2310(95)00149-S.
Cheng, J. H., M. J. Hsieh, and K. S. Chen, 2016: Characteristics and source apportionment of ambient volatile organic compounds in a science park in central Taiwan. Aerosol and Air Quality Research, 16(1), 221−229, https://doi.org/10.4209/aaqr.2015.02.0114.
Cooper, O. R., and Coauthors, 2010: Increasing springtime ozone mixing ratios in the free troposphere over western North America. Nature, 463(7279), 344−348, https://doi.org/10.1038/nature08708.
Duan, J. C., J. H. Tan, L. Yang, S. Wu, and J. M. Hao, 2008: Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmospheric Research, 88(1), 25−35, https://doi.org/10.1016/j.atmosres.2007.09.004.
Geng, F. H., and Coauthors, 2009: Aircraft measurements of O3, NOx, CO, VOCs, and SO2 in the Yangtze River Delta region. Atmos. Environ., 43(3), 584−593, https://doi.org/10.1016/j.atmosenv.2008.10.021.
Glaser, K., U. Vogt, G. Baumbach, A. Volz-Thomas, and H. Geiss, 2003: Vertical profiles of O3, NO2, NOx, VOC, and meteorological parameters during the Berlin Ozone Experiment (BERLIOZ) campaign. J. Geophys. Res., 108(D4), 8253, https://doi.org/10.1029/2002JD002475.
Grosjean, D., and J. H. Seinfeld, 1989: Parameterization of the formation potential of secondary organic aerosols. Atmos. Environ., 23(8), 1733−1747, https://doi.org/10.1016/0004-6981(89)90058-9.
Guo, H., T. Wang, I. J. Simpson, D. R. Blake, X. M. Yu, Y. H. Kwok, and Y. S. Li, 2004: Source contributions to ambient VOCs and CO at a rural site in eastern China. Atmos. Environ., 38(27), 4551−4560, https://doi.org/10.1016/j.atmosenv.2004.05.004.
Guo, H., K. L. So, I. J. Simpson, B. Barletta, S. Meinardi, and D. R. Blake, 2007: C1−C8 volatile organic compounds in the atmosphere of Hong Kong: Overview of atmospheric processing and source apportionment. Atmos. Environ., 41(7), 1456−1472, https://doi.org/10.1016/j.atmosenv.2006.10.011.
Huang, C., and Coauthors, 2011: Emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta region, China. Atmospheric Chemistry and Physics, 11(9), 4105−4120, https://doi.org/10.5194/acp-11-4105-2011.
Jerrett, M., and Coauthors, 2009: Long-term ozone exposure and mortality. The New England Journal of Medicine, 360(11), 1085−1095, https://doi.org/10.1056/NEJMoa0803894.
Jia, C. H., and Coauthors, 2016: Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China. Atmospheric Research, 169, 225−236, https://doi.org/10.1016/j.atmosres.2015.10.006.
Jin, X. M., and T. Holloway, 2015: Spatial and temporal variability of ozone sensitivity over China observed from the Ozone Monitoring Instrument. J. Geophys. Res., 120(14), 7229−7246, https://doi.org/10.1002/2015JD023250.
Kalabokas, P. D., J. Hatzianestis, J. G. Bartzis, and P. Papagiannakopoulos, 2001: Atmospheric concentrations of saturated and aromatic hydrocarbons around a greek oil refinery. Atmos. Environ., 35, 2545−2555, https://doi.org/10.1016/S1352-2310(00)00423-4.
Klemas, V. V., 2015: Coastal and environmental remote sensing from unmanned aerial vehicles: An overview. Journal of Coastal Research, 31(5), 1260−1267, https://doi.org/10.2112/jcoastres-d-15-00005.1.
Li, M. M., T. J. Wang, M. Xie, B. L. Zhuang, S. Li, Y. Han, Y. Song, and N. L. Cheng, 2017: Improved meteorology and ozone air quality simulations using MODIS land surface parameters in the Yangtze River Delta urban cluster, China. J. Geophys. Res., 122(5), 3116−3140, https://doi.org/10.1002/2016jd026182.
Lin, C. C., C. Lin, L. T. Hsieh, C. Y. Chen, and J. P. Wang, 2011: Vertical and diurnal characterization of volatile organic compounds in ambient air in urban areas. Journal of the Air & Waste Management Association, 61(7), 714−720, https://doi.org/10.3155/1047-3289.61.7.714.
Liu, Y., M. Shao, L. L. Fu, S. H. Lu, L. M. Zeng, and D. G. Tang, 2008: Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmos. Environ., 42(25), 6247−6260, https://doi.org/10.1016/j.atmosenv.2008.01.070.
Liu, Y., and Coauthors, 2018: Estimation of biogenic VOC emissions and its impact on ozone formation over the Yangtze River Delta region, China. Atmos. Environ., 186, 113−128, https://doi.org/10.1016/j.atmosenv.2018.05.027.
Luo, H., L. Jia, Q. Wan, T. C. An, and Y. J. Wang, 2019: Role of liquid water in the formation of O3 and SOA particles from 1:2,3-trimethylbenzene. Atmos. Environ., 217, 116955, https://doi.org/10.1016/j.atmosenv.2019.116955.
Mao, T., Y. S. Wang, J. Jiang, F. K. Wu, and M. X. Wang, 2008: The vertical distributions of VOCs in the atmosphere of Beijing in autumn. Science of the Total Environment, 390, 97−108, https://doi.org/10.1016/j.scitotenv.2007.08.035.
Parrish, D. D., A. Stohl, C. Forster, E. L. Atlas, D. R. Blake, P. D. Goldan, W. C. Kuster, and J. A. de Gouw, 2007: Effects of mixing on evolution of hydrocarbon ratios in the troposphere. J. Geophys. Res., 112(D10), D10S34, https://doi.org/10.1029/2006jd007583.
Qiu, W. Y., S. L. Li, Y. H. Liu, and K. D. Lu, 2019: Petrochemical and industrial sources of volatile organic compounds analyzed via regional wind-driven network in Shanghai. Atmosphere, 10(12), 760, https://doi.org/10.3390/atmos10120760.
Sangiorgi, G., L. Ferrero, M. G. Perrone, E. Bolzacchini, M. Duane, and B. R. Larsen, 2011: Vertical distribution of hydrocarbons in the low troposphere below and above the mixing height: Tethered balloon measurements in Milan, Italy. Environmental Pollution, 159(12), 3545−3552, https://doi.org/10.1016/j.envpol.2011.08.012.
She, Q. N., and Coauthors, 2017: Air quality and its response to satellite-derived urban form in the Yangtze River Delta, China. Ecological Indicators, 75, 297−306, https://doi.org/10.1016/j.ecolind.2016.12.045.
Sheng, J. J., D. L. Zhao, D. P. Ding, X. Li, M. Y. Huang, Y. Gao, J. N. Quan, and Q. Zhang, 2018: Characterizing the level, photochemical reactivity, emission, and source contribution of the volatile organic compounds based on PTR-TOF-MS during winter haze period in Beijing, China. Atmospheric Research, 212, 54−63, https://doi.org/10.1016/j.atmosres.2018.05.005.
Sun, J., Y. S. Wang, F. K. Wu, G. Q. Tang, L. L. Wang, Y. H. Wang, and Y. Yang, 2018: Vertical characteristics of VOCs in the lower troposphere over the North China Plain during pollution periods. Environmental Pollution, 236, 907−915, https://doi.org/10.1016/j.envpol.2017.10.051.
Sun, L., and Coauthors, 2016: Significant increase of summertime ozone at Mount Tai in Central Eastern China. Atmospheric Chemistry and Physics, 16(16), 10 637−10 650, https://doi.org/10.5194/acp-16-10637-2016.
Tan, Z. F., and Coauthors, 2018: Exploring ozone pollution in Chengdu, southwestern China: A case study from radical chemistry to O3-VOC- NOx sensitivity. Science of the Total Environment, 636, 775−786, https://doi.org/10.1016/j.scitotenv.2018.04.286.
Tsai, H. H., and Coauthors, 2012: Vertical profile and spatial distribution of ozone and its precursors at the inland and offshore of an industrial city. Aerosol and Air Quality Research, 12(5), 911−922, https://doi.org/10.4209/aaqr.2012.01.0018.
Vo, T. D. H., and Coauthors, 2018: Vertical stratification of volatile organic compounds and their photochemical product formation potential in an industrial urban area. Journal of Environmental Management, 217, 327−336, https://doi.org/10.1016/j.jenvman.2018.03.101.
Wang, H. L., and Coauthors, 2018: Emissions of volatile organic compounds (VOCs) from cooking and their speciation: A case study for Shanghai with implications for China. Science of the Total Environment, 621, 1300−1309, https://doi.org/10.1016/j.scitotenv.2017.10.098.
Wu, S., and Coauthors, 2020: Vertically decreased VOC concentration and reactivity in the planetary boundary layer in winter over the North China Plain. Atmospheric Research, 240, 104930, https://doi.org/10.1016/j.atmosres.2020.104930.
Wu, W. J., B. Zhao, S. X. Wang, and J. M. Hao, 2017: Ozone and secondary organic aerosol formation potential from anthropogenic volatile organic compounds emissions in China. Journal of Environmental Sciences, 53, 224−237, https://doi.org/10.1016/j.jes.2016.03.025.
Xue, L. K., and Coauthors, 2016: Oxidative capacity and radical chemistry in the polluted atmosphere of Hong Kong and Pearl River Delta region: Analysis of a severe photochemical smog episode. Atmospheric Chemistry and Physics, 16(15), 9891−9903, https://doi.org/10.5194/acp-16-9891-2016.
Yuan, B., W. W. Hu, M. Shao, M. Wang, W. T. Chen, S. H. Lu, L. M. Zeng, and M. Hu, 2013: VOC emissions, evolutions and contributions to SOA formation at a receptor site in eastern China. Atmospheric Chemistry and Physics, 13(17), 8815−8832, https://doi.org/10.5194/acp-13-8815-2013.
Zhang, J., T. Wang, W. L. Chameides, C. Cardelino, J. Kwok, D. R. Blake, A. Ding, and K. L. So, 2007: Ozone production and hydrocarbon reactivity in Hong Kong, Southern China. Atmospheric Chemistry and Physics, 7, 557−573, https://doi.org/10.5194/acp-7-557-2007.
Zhang, K., G. L. Xiu, L. Zhou, Q. G. Bian, Y. S. Duan, D. N. Fei, and D. F. Wang, and Q. Y. Fu, 2018: Vertical distribution of volatile organic compounds within the lower troposphere in late spring of Shanghai. Atmos. Environ., 186, 150−157, https://doi.org/10.1016/j.atmosenv.2018.03.044.
Zhang, W. Q., and Coauthors, 2020: Different HONO sources for three layers at the urban area of Beijing. Environmental Science & Technology, 54, 12 870−12 880, https://doi.org/10.1021/acs.est.0c02146.
Zhang, Y. H., and Coauthors, 2008: Regional ozone pollution and observation-based approach for analyzing ozone-precursor relationship during the PRIDE-PRD2004 campaign. Atmos. Environ., 42(25), 6203−6218, https://doi.org/10.1016/j.atmosenv.2008.05.002.