Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129(4), 569−585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.
Chen, Y. D., K. M. Fang, M. Chen, and H. L. Wang, 2021: Diurnally varying background error covariances estimated in RMAPS-ST and their impacts on operational implementations. Atmospheric Research, 257, 105624, https://doi.org/10.1016/j.atmosres.2021.105624.
Courtier, P., J.-N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 1367−1387, https://doi.org/10.1002/qj.49712051912.
Descombes, G., T. Auligné, F. Vandenberghe, D. M. Barker, and J. Barré, 2015: Generalized background error covariance matrix model (GEN_BE v2.0). Geoscientific Model Development, 8, 669−696, https://doi.org/10.5194/gmd-8-669-2015.
Dudhia, J. 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46(20), 3077−3107,
Furtado, K., and Coauthors, 2018: Cloud microphysical factors affecting simulations of deep convection during the presummer rainy season in Southern China. J. Geophys. Res., 123, 10 477−10 505,
Gauthier, P., and J.-N. Thépaut, 2001: Impact of the digital filter as a weak constraint in the preoperational 4DVAR assimilation system of Météo-France. Mon. Wea. Rev., 129, 2089−2102, https://doi.org/10.1175/1520-0493(2001)129<2089:IOTDFA>2.0.CO;2.
Gauthier, P., M. Tanguay, S. Laroche, S. Pellerin, and J. Morneau, 2007: Extension of 3DVar to 4DVar: Implementation of 4Dvar at the meteorological service of Canada. Mon. Wea. Rev., 135, 2339−2354, https://doi.org/10.1175/MWR3394.1.
Geer, A. J., and Coauthors, 2017: The growing impact of satellite observations sensitive to humidity, cloud and precipitation. Quart. J. Roy. Meteor. Soc., 143(709), 3189−3206, https://doi.org/10.1002/qj.3172.
Giering, R., and T. Kaminski, 2003: Applying TAF to generate efficient derivative code of Fortran 77-95 programs. Proceedings in Applied Mathematics and Mechanics, 2(1), 54−57, https://doi.org/10.1002/pamm.200310014.
Hascoet, L., and V. Pascual., 2013: The tapenade automatic differentiation tool: Principles, model, and specification. ACM Transactions on Mathematical Software, 39(3), 20, https://doi.org/10.1145/2450153.2450158.
Honda, Y., M. Nishijima, K. Koizumi, Y. Ohta, K. Tamiya, T. Kawabata, and T. Tsuyuki, 2005: A pre-operational variational data assimilation system for a non-hydrostatic model at the Japan Meteorological Agency: Formulation and preliminary results. Quart. J. Roy. Meteor. Soc., 131(613), 3465−3475, https://doi.org/10.1256/qj.05.132.
Hong, S. Y., and H. L. Pan, 1998: Convective trigger function for a mass-flux cumulus parameterization scheme. Mon. Wea. Rev., 126(10), 2599−2620, https://doi.org/10.1175/1520-0493(1998)126<2599:CTFFAM>2.0.CO;2.
Hong, S. Y., and J. O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological Society, 42(2), 129−151.
Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134(9), 2318−2341, https://doi.org/10.1175/MWR3199.1.
Hong, S. Y., K. S. S. Lim, J. H. Kim, J. O. J. Lim, and J. Dudhia, 2009: Sensitivity study of cloud-resolving convective simulations with WRF using two bulk microphysical parameterizations: Ice-phase microphysics versus sedimentation effects. J. Appl. Meteorol. Climatol., 48(1), 61−76, https://doi.org/10.1175/2008JAMC1960.1.
Huang, X.-Y., X. Yang, N. Gustafsson, K. S. Mogensen, and M. Lindskog, 2002: Four-dimensional variational data assimilation for a limited area model. HIRLAM Technical Report 57, 44 pp.
Huang, X. Y., and Coauthors, 2009: Four-dimensional variational data assimilation for WRF: Formulation and preliminary results. Mon. Wea. Rev., 137(1), 299−314, https://doi.org/10.1175/2008MWR2577.1.
Janisková, M., and P. Lopez, 2013: Linearized physics for data assimilation at ECMWF. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications(II)−286, https://doi.org/10.1007/978-3-642-35088-7_11.
Janisková, M., J.-N. Thépaut, and J. F. Geleyn, 1999: Simplified and regular physical parameterizations for incremental four-dimensional variational assimilation. Mon. Wea. Rev., 127(1), 26−45, https://doi.org/10.1175/1520-0493(1999)127<0026:SARPPF>2.0.CO;2.
Kadowaki, T., 2005: A 4-dimensional variational assimilation system for the JMA Global Spectrum Model. Research Activities in Atmospheric and Oceanic Modelling, J. Coté, Ed., WMO.
Kessler, E., 1969: On the distribution and continuity of water substance in atmospheric circulations. On the Distribution and Continuity of Water Substance in Atmosphere Circulations, E. Kessler, Ed., American Meteorological Society, 1−84,
Le Dimet, F.-X., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus, 38A, 97−110, https://doi.org/10.1111/j.1600-0870.1986.tb00459.x.
Lewis, J. M., and J. C. Derber, 1985: The use of adjoint equations to solve a variational adjustment problem with advective constraints. Tellus, 37A, 309−322, https://doi.org/10.1111/j.1600-0870.1985.tb00430.x.
Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Appl. Meteorol. Climatol., 22(6), 1065−1092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.
Liu, Y. Z., L. Zhang, and Z. H. Lian, 2018: Conjugate gradient algorithm in the four-dimensional variational data assimilation system in GRAPES. Journal of Meteorological Research, 32(6), 974−984, https://doi.org/10.1007/s13351-018-8053-2.
Liu, Z. Q., J. M. Ban, J.-S. Hong, and Y.-H. Kuo, 2020: Multi-resolution incremental 4D-Var for WRF: Implementation and application at convective scale. Quart. J. Roy. Meteor. Soc., 146(733), 3661−3674, https://doi.org/10.1002/qj.3865.
Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP—A comparison with 4D-Var. Quart. J. Roy. Meteor. Soc., 129(595), 3183−3203, https://doi.org/10.1256/qj.02.132.
Mahfouf, J.-F., and F. Rabier, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. II: Experimental results with improved physics. Quart. J. Roy. Meteor. Soc., 126(564), 1171−1190, https://doi.org/10.1002/qj.49712656416.
Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62(9), 3051−3064, https://doi.org/10.1175/JAS3534.1.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102(D14), 16 663−16 682,
Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62(6), 1665−1677, https://doi.org/10.1175/JAS3446.1.
Navon, I. M., X. Zou, J. Derber, and J. Sela, 1992: Variational data assimilation with an adiabatic version of the NMC spectral model. Mon. Wea. Rev., 120, 1433−1446, https://doi.org/10.1175/1520-0493(1992)120<1433:VDAWAA>2.0.CO;2.
Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 1747−1763, https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.
Rabier, F., J.-N. Thépaut, and P. Courtier, 1998: Extended assimilation and forecast experiments with a four-dimensional variational assimilation system. Quart. J. Roy. Meteor. Soc., 124(550), 1861−1887, https://doi.org/10.1002/qj.49712455005.
Rabier, F., H. Järvinen, E. Klinker, J.-F. Mahfouf, and A. Simmons, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126(564), 1143−1170, https://doi.org/10.1002/qj.49712656415.
Rakesh, S., and G. Kutty, 2021: Intercomparison of the performance of four data assimilation schemes in a limited-area model on forecasts of an extreme rainfall event over the Uttarakhand in Himalayas. Earth and Space Science, 8(7), e2020EA001461, https://doi.org/10.1029/2020EA001461.
Rawlins, F., S. P. Ballard, K. J. Bovis, A. M. Clayton, D. Li, G. W. Inverarity, A. C. Lorenc, and T. J. Payne, 2007: The Met Office global four-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 133, 347−362, https://doi.org/10.1002/qj.32.
Rosmond, T., and L. Xu, 2006: Development of NAVDAS-AR: Nonlinear formulation and outer loop tests. Tellus, 58A, 45−58, https://doi.org/10.1111/j.1600-0870.2006.00148.x.
Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40(5), 1185−1206, https://doi.org/10.1175/1520-0469(1983)040<1185:TMAMSA>2.0.CO;2.
Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41(20), 2949−2972, https://doi.org/10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2.
Sun, J. Z., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642−1661, https://doi.org/10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2.
Sun, T., Y. D. Chen, D. M. Meng, and H. Q. Chen, 2021: Background error covariance statistics of hydrometeor control variables based on Gaussian transform. Adv. Atmos. Sci., 38(5), 831−844, https://doi.org/10.1007/s00376-021-0271-3.
Teng, F. D., D. Q. Li, D. K. Jiang, S. Yang, H. Wang, J. L. Lu, and A. Q. Nie, 2020: Comparative analysis of simulations on a heavy snow event in Liaoning province using different cloud microphysical parameterization schemes. Acta Meteorologica Sinica, 78(4), 608−622. (in Chinese with English abstract)
Thépaut, J.-N., and P. Courtier, 1991: Four-dimensional variational data assimilation using the adjoint of a multilevel primitive-equation model. Quart. J. Roy. Meteor. Soc., 117(502), 1225−1254, https://doi.org/10.1002/qj.49711750206.
Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136(12), 5095−5115, https://doi.org/10.1175/2008MWR2387.1.
Tripoli, G. J., and W. R. Cotton, 1980: A numerical investigation of several factors contributing to the observed variable intensity of deep convection over south Florida. J. Appl. Meteorol. Climatol., 19(9), 1037−1063, https://doi.org/10.1175/1520-0450(1980)019<1037:ANIOSF>2.0.CO;2.
Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New RAMS cloud microphysics parameterization part I: The single-moment scheme. Atmospheric Research, 38(1−4), 29−62, https://doi.org/10.1016/0169-8095(94)00087-T.
Wang, H. L., J. Z. Sun, X. Zhang, X.-Y. Huang, and T. Auligné, 2013: Radar data assimilation with WRF 4D-Var. Part I: System development and preliminary testing. Mon. Wea. Rev., 141(7), 2224−2244, https://doi.org/10.1175/MWR-D-12-00168.1.
Wang, X. G., and T. Lei, 2014: GSI-based four-dimensional ensemble–variational (4DEnsVar) data assimilation: Formulation and single-resolution experiments with real data for NCEP Global Forecast System. Mon. Wea. Rev., 142(9), 3303−3325, https://doi.org/10.1175/MWR-D-13-00303.1.
Xiao, Q. N., X. Zou, M. Pondeca, M. A. Shapiro, and C. Velden, 2002: Impact of GMS-5 and GOES-9 satellite-derived winds on the prediction of a NORPEX extratropical cyclone. Mon. Wea. Rev., 130(3), 507−528, https://doi.org/10.1175/1520-0493(2002)130<0507:IOGAGS>2.0.CO;2.
Xiao, Q. N., Y. H. Kuo, J. Z. Sun, W.-C. Lee, D. M. Barker, and E. Lim, 2007: An approach of radar reflectivity data assimilation and its assessment with the inland QPF of Typhoon Rusa (2002) at landfall. J. Appl. Meteorol. Climatol., 46(1), 14−22, https://doi.org/10.1175/JAM2439.1.
Xiao, Q. N., and Coauthors, 2008: Application of an adiabatic WRF adjoint to the investigation of the May 2004 McMurdo, Antarctica, severe wind event. Mon. Wea. Rev, 136(10), 3696−3713, https://doi.org/10.1175/2008MWR2235.1.
Xu, L., T. Rosmond, and R. Daley, 2005: Development of NAVDAS-AR: Formulation and initial tests of the linear problem. Tellus, 57A, 546−559, https://doi.org/10.1111/j.1600-0870.2005.00123.x.
Zhang, L., and Coauthors, 2019: The operational global four-dimensional variational data assimilation system at the China Meteorological Administration. Quart. J. Roy. Meteor. Soc., 145, 1882−1896, https://doi.org/10.1002/qj.3533.
Zhang, X., X.-Y. Huang, and N. Pan, 2013: Development of the upgraded tangent linear and adjoint of the Weather Research and Forecasting (WRF) Model. J. Atmos. Oceanic Technol., 30(6), 1180−1188, https://doi.org/10.1175/JTECH-D-12-00213.1.
Zhang, X., X.-Y. Huang, J. Y. Liu, J. Poterjoy, Y. H. Weng, F. Q. Zhang, and H. L. Wang, 2014: Development of an efficient regional four-dimensional variational data assimilation system for WRF. J. Atmos. Oceanic Technol., 31(12), 2777−2794, https://doi.org/10.1175/JTECH-D-13-00076.1.
Zou, X., 1997: Tangent linear and adjoint of “on-off” processes and their feasibility for use in 4-dimensional variational data assimilation. Tellus, 49A(1), 3−31, https://doi.org/10.1034/j.1600-0870.1997.00002.x.
Zou, X., I. M. Navon, and F. X. Le Dimet, 1992: Incomplete observations and control of gravity waves in variational data assimilation. Tellus, 44A, 273−296, https://doi.org/10.3402/tellusa.v44i4.14961.
Zou, X., I. M. Navon, J. Sela, 1993: Variational data assimilation with moist threshold processes using the NMC spectral model. Tellus A: Dynamic Meteorology and Oceanography, 45(5), 370−387, https://doi.org/10.3402/tellusa.v45i5.14900.
Zou, X., Y.-H. Kuo, and Y.-R. Guo, 1995: Assimilation of atmospheric radio refractivity using a nonhydrostatic adjoint model. Mon. Wea. Rev., 123, 2229−2250, https://doi.org/10.1175/1520-0493(1995)123<2229:AOARRU>2.0.CO;2.
Zupanski, D., 1993: The effects of discontinuities in the Betts-Miller cumulus convection scheme on four-dimensional variational data assimilation. Tellus, 45A, 511−524, https://doi.org/10.1034/j.1600-0870.1993.00013.x.