Bougeault, P., and P. Lacarrere, 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117(8), 1872−1890, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.
Chang, C.-C., and C.-C. Wu, 2017: On the processes leading to the rapid intensification of Typhoon Megi (2010). J. Atmos. Sci., 74(4), 1169−1200, https://doi.org/10.1175/JAS-D-16-0075.1.
Chen, G. H., 2016: Determination of the effect of initial inner-core structure on tropical cyclone intensification and track on a beta plane. Adv. Atmos. Sci., 33(8), 945−954, https://doi.org/10.1007/s00376-016-5241-9.
Chen, X. M., J. A. Zhang, and F. D. Marks, 2019: A thermodynamic pathway leading to rapid intensification of tropical cyclones in shear. Geophys. Res. Lett., 46(15), 9241−9251, https://doi.org/10.1029/2019GL083667.
Chen, X. M., Y. Q. Wang, K. Zhao, and D. Wu, 2017: A numerical study on rapid intensification of Typhoon Vicente (2012) in the South China Sea. Part I: Verification of simulation, storm-scale evolution, and environmental contribution. Mon. Wea. Rev., 145(3), 877−898, https://doi.org/10.1175/MWR-D-16-0147.1.
Chen, X. M., Y. Q. Wang, J. Fang, and M. Xue, 2018: A numerical study on rapid intensification of Typhoon Vicente (2012) in the South China Sea. Part II: Roles of inner-core processes. J. Atmos. Sci., 75(1), 235−255, https://doi.org/10.1175/JAS-D-17-0129.1.
Cheng, C.-J., and C.-C. Wu, 2020: The role of WISHE in the rapid intensification of tropical cyclones. J. Atmos. Sci., 77(9), 3139−3160, https://doi.org/10.1175/JAS-D-20-0006.1.
Cheng, X. P., J. F. Fei, X. G. Huang, and J. Zheng, 2012: Effects of sea spray evaporation and dissipative heating on intensity and structure of tropical cyclone. Adv. Atmos. Sci., 29(4), 810−822, https://doi.org/10.1007/s00376-012-1082-3.
DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving. Bull. Amer. Meteor. Soc., 95(3), 387−398, https://doi.org/10.1175/BAMS-D-12-00240.1.
DeMaria, M., J. Kaplan, and J.-J. Baik, 1993: Upper-level eddy angular momentum fluxes and tropical cyclone intensity change. J. Atmos. Sci., 50(8), 1133−1147, https://doi.org/10.1175/1520-0469(1993)050<1133:ULEAMF>2.0.CO;2.
Ding, Y. H., and Y. Z. Liu, 1986: Study on Kinetic Energy Budget of a Typhoon-The conversion between Kinetic energies of divergent winds and non-divergent winds. Scientia Sinica (Series B), 29(4), 397−410.
Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46(20), 3077−3107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108(D22), 8851, https://doi.org/10.1029/2002JD003296.
Elsberry, R. L., T. D. B. Lambert, and M. A. Boothe, 2007: Accuracy of Atlantic and eastern North Pacific tropical cyclone intensity forecast guidance. Wea. Forecasting, 22(4), 747−762, https://doi.org/10.1175/WAF1015.1.
Feng, T., G.-H. Chen, R.-H. Huang, and X.-Y. Shen, 2014: Large-scale circulation patterns favourable to tropical cyclogenesis over the western North Pacific and associated barotropic energy conversions. International Journal of Climatology, 34(1), 216−227, https://doi.org/10.1002/joc.3680.
Hong, S. Y., and J.-O. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological Society, 42, 129−151.
Kain, J. S., 2004: The kain- fritsch convective parameterization: An update. J. Appl. Meteor., 43(1), 170−181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
Kanada, S., and A. Wada, 2015: Numerical study on the extremely rapid intensification of an intense tropical cyclone: Typhoon Ida (1958). J. Atmos. Sci., 72(11), 4194−4217, https://doi.org/10.1175/JAS-D-14-0247.1.
Kaplan, J., and M. Demaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18(6), 1093−1108, https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.
Kornegay, F. C., and D. G. Vincent, 1976: Kinetic energy budget analysis during interaction of Tropical Storm Candy (1968) with an extratropical frontal system. Mon. Wea. Rev., 104(7), 849−859, https://doi.org/10.1175/1520-0493(1976)104<0849:KEBADI>2.0.CO;2.
Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121(7), 2030−2045, https://doi.org/10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2.
Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL hurricane prediction system. Mon. Wea. Rev., 123(9), 2791−2801, https://doi.org/10.1175/1520-0493(1995)123<2791:IITGHP>2.0.CO;2.
Leroux, M.-D., M. Plu, D. Barbary, F. Roux, and P. Arbogast, 2013: Dynamical and physical processes leading to tropical cyclone intensification under upper-level trough forcing. J. Atmos. Sci., 70(8), 2547−2565, https://doi.org/10.1175/JAS-D-12-0293.1.
Leroux, M.-D., M. Plu, and F. Roux, 2016: On the sensitivity of tropical cyclone intensification under upper-level trough forcing. Mon. Wea. Rev., 144(3), 1179−1202, https://doi.org/10.1175/MWR-D-15-0224.1.
Li, M. X., F. Ping, J. Chen, and L. R. Xu, 2016: A simulation study on the rapid intensification of Typhoon Megi (2010) in vertical wind shear. Atmospheric Science Letters, 17(12), 630−638, https://doi.org/10.1002/asl.713.
Li, X. F., 1993: On the dynamics of vortex propagation and associated asymmetric gyres. PhD dissertation, University of Hawaii at Manoa, 102 pp.
Liang, X. S., and D. G. M. Anderson, 2007: Multiscale window transform. Multiscale Modeling & Simulation, 6(2), 437−467, https://doi.org/10.1137/06066895X.
Miyamoto, Y., and T. Takemi, 2015: A triggering mechanism for rapid intensification of tropical cyclones. J. Atmos. Sci., 72(7), 2666−2681, https://doi.org/10.1175/JAS-D-14-0193.1.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102(D14), 16 663−16 682,
Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123(538), 435−465, https://doi.org/10.1002/qj.49712353810.
Moon, I.-J., I. Ginis, T. Hara, and B. Thomas, 2007: A physics-based parameterization of air–sea momentum flux at high wind speeds and its impact on hurricane intensity predictions. Mon. Wea. Rev., 135(8), 2869−2878, https://doi.org/10.1175/MWR3432.1.
Persing, J., M. T. Montgomery, and R. E. Tuleya, 2002: Environmental interactions in the GFDL hurricane model for hurricane opal. Mon. Wea. Rev., 130(2), 298−317, https://doi.org/10.1175/1520-0493(2002)130<0298:EIITGH>2.0.CO;2.
Prasanth, S., D. R. Chavas, F. D. Jr. Marks, S. Dubey, A. Shreevastava, and T. N. Krishnamurti, 2020: Characterizing the energetics of vortex-scale and sub-vortex-scale asymmetries during tropical cyclone rapid intensity changes. J. Atmos. Sci., 77(1), 315−336, https://doi.org/10.1175/JAS-D-19-0067.1.
Rappaport, E. N., and Coauthors, 2009: Advances and challenges at the national hurricane center. Wea. Forecasting, 24(2), 395−419, https://doi.org/10.1175/2008WAF2222128.1.
Shieh, O. H., M. Fiorino, M. E. Kucas, and B. Wang, 2013: Extreme rapid intensification of Typhoon Vicente (2012) in the South China Sea. Wea. Forecasting, 28(6), 1578−1587, https://doi.org/10.1175/WAF-D-13-00076.1.
Sun, Y., Z. Zhong, and Y. Wang, 2012: Kinetic energy budget of Typhoon Yagi (2006) during its extratropical transition. Meteorol. Atmos. Phys., 118(1−2), 65−78, https://doi.org/10.1007/s00703-012-0200-1.
Wada, A., 2015: Unusually rapid intensification of Typhoon Man-yi in 2013 under preexisting warm-water conditions near the Kuroshio front south of Japan. Journal of Oceanography, 71(5), 597−622, https://doi.org/10.1007/s10872-015-0273-9.
Wang, Y. P., X. P. Cui, X. F. Li, W. L. Zhang, and Y. J. Huang, 2016: Kinetic energy budget during the genesis period of Tropical Cyclone Durian (2001) in the South China Sea. Mon. Wea. Rev., 144(8), 2831−2854, https://doi.org/10.1175/MWR-D-15-0042.1.
Wang, Y. Q., 2002: Vortex rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity, and kinetic energy budgets. J. Atmos. Sci., 59(7), 1213−1238, https://doi.org/10.1175/1520-0469(2002)059<1213:VRWIAN>2.0.CO;2.
Yamada, H., Q. Moteki, and M. Yoshizaki, 2010: The unusual track and rapid intensification of Cyclone Nargis in 2008 under a characteristic environmental flow over the Bay of Bengal. J. Meteor. Soc. Japan, 88(3), 437−453, https://doi.org/10.2151/jmsj.2010-311.
Yang, M.-J., D.-L. Zhang, and H.-L. Huang, 2008: A modeling study of Typhoon Nari (2001) at landfall. Part I: Topographic effects. J. Atmos. Sci., 65(10), 3095−3115, https://doi.org/10.1175/2008JAS2453.1.
Zeng, Z. H., Y. Q. Wang, and L. S. Chen, 2010: A statistical analysis of vertical shear effect on tropical cyclone intensity change in the North Atlantic. Geophys. Res. Lett., 37(2), L02802, https://doi.org/10.1029/2009GL041788.
Zhang, R. W., J. L. Huangfu, and T. Hu, 2019: Dynamic mechanism for the evolution and rapid intensification of Typhoon Hato (2017). Atmospheric Science Letters, 20(8), e930, https://doi.org/10.1002/asl.930.
Zhao, H. R., L. G. Wu, and X. S. Liang, 2015: Preliminary application of the MWT method to separate tropical cyclone circulation. Advances in Meteorological Science and Technology, 5(6), 31−36, https://doi.org/10.3969/j.issn.2095-1973.2015.06.005. (in Chinese with English abstract