Alfarra, M. R., and Coauthors, 2012: The effect of photochemical ageing and initial precursor concentration on the composition and hygroscopic properties of β-caryophyllene secondary organic aerosol. Atmospheric Chemistry and Physics, 12, 6417−6436, https://doi.org/10.5194/acp-12-6417-2012.
Asa-Awuku, A., M. A. Miracolo, J. H. Kroll, A. L. Robinson, and N. M. Donahue, 2009: Mixing and phase partitioning of primary and secondary organic aerosols. Geophys. Res. Lett., 36, L15827, https://doi.org/10.1029/2009GL039301.
Atkinson, R., 2000: Atmospheric chemistry of VOCs and NOx. Atmos. Environ., 34, 2063−2101, https://doi.org/10.1016/S1352-2310(99)00460-4.
Atkinson, R., and J. Arey, 1998: Atmospheric chemistry of biogenic organic compounds. Accounts of Chemical Research, 31, 574−583, https://doi.org/10.1021/ar970143z.
Ayres, B. R., and Coauthors, 2015: Organic nitrate aerosol formation via NO3 + biogenic volatile organic compounds in the southeastern United States. Atmospheric Chemistry and Physics, 15, 13 377−13 392, https://doi.org/10.5194/acp-15-13377-2015.
Babar, Z. B., J. H. Park, and H. J. Lim, 2017: Influence of NH3 on secondary organic aerosols from the ozonolysis and photooxidation of α-pinene in a flow reactor. Atmos. Environ., 164, 71−84, https://doi.org/10.1016/j.atmosenv.2017.05.034.
Barsanti, K. C., and J. F. Pankow, 2006: Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions—Part 3: Carboxylic and dicarboxylic acids. Atmospheric Environment, 40, 6676−6686, https://doi.org/10.1016/j.atmosenv.2006.03.013.
Barsanti, K. C., P. H. McMurry, and J. N. Smith, 2009: The potential contribution of organic salts to new particle growth. Atmospheric Chemistry and Physics, 9, 2949−2957, https://doi.org/10.5194/acp-9-2949-2009.
Berresheim, H., M. Adam, C. Monahan, C. O'Dowd, J. M. C. Plane, B. Bohn, and F. Rohrer, 2014: Missing SO2 oxidant in the coastal atmosphere? Observations from high-resolution measurements of OH and atmospheric sulfur compounds Atmospheric Chemistry and Physics, 14, 12 209−12 223, https://doi.org/10.5194/acp-14-12209-2014.
Bikkina, S., K. Kawamura, Y. Miyazaki, and P. Q. Fu, 2014: High abundances of oxalic, azelaic, and glyoxylic acids and methylglyoxal in the open ocean with high biological activity: Implication for secondary OA formation from isoprene. Geophys. Res. Lett., 41, 3649−3657, https://doi.org/10.1002/2014GL059913.
Bikkina, S., K. Kawamura, and Y. Miyazaki, 2015: Latitudinal distributions of atmospheric dicarboxylic acids, oxocarboxylic acids, and α-dicarbonyls over the western North Pacific: Sources and formation pathways. J. Geophys. Res. Atmos., 120, 5010−5035, https://doi.org/10.1002/2014JD022235.
Bones, D. L., D. K. Henricksen, S. A. Mang, M. Gonsior, A. P. Bateman, T. B. Nguyen, W. J. Cooper, and S. A. Nizkorodov, 2010: Appearance of strong absorbers and fluorophores in limonene-O3 secondary organic aerosol due to NH4+-mediated chemical aging over long time scales. J. Geophys. Res., 115, D05203, https://doi.org/10.1029/2009JD012864.
Boy, M., and Coauthors, 2013: Oxidation of SO2 by stabilized Criegee intermediate (sCI) radicals as a crucial source for atmospheric sulfuric acid concentrations. Atmospheric Chemistry and Physics, 13, 3865−3879, https://doi.org/10.5194/acp-13-3865-2013.
Brown, S. S., and J. Stutz, 2012: Nighttime radical observations and chemistry. Chemical Society Reviews, 41, 6405−6447, https://doi.org/10.1039/C2CS35181A.
Brown, S. S., and Coauthors, 2013: Biogenic VOC oxidation and organic aerosol formation in an urban nocturnal boundary layer: Aircraft vertical profiles in Houston, TX. Atmospheric Chemistry and Physics, 13, 11 317−11 337, https://doi.org/10.5194/acp-13-11317-2013.
Bryant, D. J., and Coauthors, 2020: Strong anthropogenic control of secondary organic aerosol formation from isoprene in Beijing. Atmospheric Chemistry and Physics, 20, 7531−7552, https://doi.org/10.5194/acp-20-7531-2020.
Budisulistiorini, S. H., and Coauthors, 2013: Real-time continuous characterization of secondary organic aerosol derived from isoprene epoxydiols in downtown Atlanta, Georgia, using the Aerodyne Aerosol Chemical Speciation Monitor. Environ. Sci. Technol., 47, 5686−5694, https://doi.org/10.1021/es400023n.
Budisulistiorini, S. H., and Coauthors, 2015: Examining the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol formation during the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee ground site. Atmospheric Chemistry and Physics, 15, 8871−8888, https://doi.org/10.5194/acp-15-8871-2015.
Cappa, C. D., S. H. Jathar, M. J. Kleeman, K. S. Docherty, J. L. Jimenez, J. H. Seinfeld, and A. S. Wexler, 2016: Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model—Part 2: Assessing the influence of vapor wall losses. Atmospheric Chemistry and Physics, 16, 3041−3059, https://doi.org/10.5194/acp-16-3041-2016.
Carlton, A. G., B. J. Turpin, K. E. Altieri, S. Seitzinger, A. Reff, H. J. Lim, and B. Ervens, 2007: Atmospheric oxalic acid and SOA production from glyoxal: Results of aqueous photooxidation experiments. Atmos. Environ., 41, 7588−7602, https://doi.org/10.1016/j.atmosenv.2007.05.035.
Carlton, A. G., R. W. Pinder, P. V. Bhave, and G. A. Pouliot, 2010: To what extent can biogenic SOA be controlled? Environ. Sci. Technol., 44, 3376−3380, https://doi.org/10.1021/es903506b.
Carlton, A. G., H. O. T. Pye, K. R. Baker, and C. J. Hennigan, 2018: Additional benefits of federal air-quality rules: Model estimates of controllable biogenic secondary organic aerosol. Environ. Sci. Technol., 52, 9254−9265, https://doi.org/10.1021/acs.est.8b01869.
Carslaw, K. S., and Coauthors, 2013: Large contribution of natural aerosols to uncertainty in indirect forcing. Nature, 503, 67−71, https://doi.org/10.1038/nature12674.
Chan, A. W. H., and Coauthors, 2010: Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation. Atmospheric Chemistry and Physics, 10, 7169−7188, https://doi.org/10.5194/acp-10-7169-2010.
Chen, F., H. Zhou, J. X. Gao, and P. K. Hopke, 2017: A chamber study of secondary organic Aerosol (SOA) formed by ozonolysis of d-Limonene in the presence of NO. Aerosol and Air Quality Research, 17, 59−68, https://doi.org/10.4209/aaqr.2016.01.0029.
Chhantyal-Pun, R., and Coauthors, 2018: Criegee intermediate reactions with carboxylic acids: A potential source of secondary organic aerosol in the atmosphere. ACS Earth and Space Chemistry, 2, 833−842, https://doi.org/10.1021/acsearthspacechem.8b00069.
Chi, X. Y., and Coauthors, 2018: Acidity of aerosols during winter heavy haze events in Beijing and Gucheng, China. Journal of Meteorological Research, 32, 14−25, https://doi.org/10.1007/s13351-018-7063-4.
Couvidat, F., M. G. Vivanco, and B. Bessagnet, 2018: Simulating secondary organic aerosol from anthropogenic and biogenic precursors: Comparison to outdoor chamber experiments, effect of oligomerization on SOA formation and reactive uptake of aldehydes. Atmospheric Chemistry and Physics, 18, 15 743−15 766, https://doi.org/10.5194/acp-18-15743-2018.
Czoschke, N. M., M. Jang, and R. M. Kamens, 2003: Effect of acidic seed on biogenic secondary organic aerosol growth. Atmos. Environ., 37, 4287−4299, https://doi.org/10.1016/S1352-2310(03)00511-9.
Darer, A. I., N. C. Cole-Filipiak, A. E. O'Connor, and M. J. Elrod, 2011: Formation and stability of atmospherically relevant isoprene-derived organosulfates and organonitrates. Environ. Sci. Technol., 45, 1895−1902, https://doi.org/10.1021/es103797z.
Dawson, M. L., M. E. Varner, V. Perraud, M. J. Ezell, R. B. Gerber, and B. J. Finlayson-Pitts, 2012: Simplified mechanism for new particle formation from methanesulfonic acid, amines, and water via experiments and ab initio calculations. Proceedings of the National Academy of Sciences of the United States of America, 109, 18719−18724, https://doi.org/10.1073/pnas.1211878109.
De Haan, D. O., M. A. Tolbert, and J. L. Jimenez, 2009: Atmospheric condensed-phase reactions of glyoxal with methylamine. Geophysical Research Letters, 36, L11819, https://doi.org/10.1029/2009GL037441.
Ding, X., Q. F. He, R. Q. Shen, Q. Q. Yu, and X. M. Wang, 2014: Spatial distributions of secondary organic aerosols from isoprene, monoterpenes, β-caryophyllene, and aromatics over China during summer. J. Geophys. Res. Atmos., 119, 11 877−11 891, https://doi.org/10.1002/2014JD021748.
Dommen, J., and Coauthors, 2006: Laboratory observation of oligomers in the aerosol from isoprene/NOx photooxidation. Geophys. Res. Lett., 33, L13805, https://doi.org/10.1029/2006GL026523.
Donahue, N. M., A. L. Robinson, C. O. Stanier, and S. N. Pandis, 2006: Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environ. Sci. Technol., 40, 2635−2643, https://doi.org/10.1021/es052297c.
Draper, D. C., D. K. Farmer, Y. Desyaterik, and J. L. Fry, 2015: A qualitative comparison of secondary organic aerosol yields and composition from ozonolysis of monoterpenes at varying concentrations of NO2. Atmospheric Chemistry and Physics, 15, 12 267−12 281, https://doi.org/10.5194/acp-15-12267-2015.
Eddingsaas, N. C., C. L. Loza, L. D. Yee, M. Chan, K. A. Schilling, P. S. Chhabra, J. H. Seinfeld, and P. O. Wennberg, 2012: α-Pinene photooxidation under controlled chemical conditions - Part 2: SOA yield and composition in low- and high-NOx environments. Atmospheric Chemistry and Physics, 12, 7413−7427, https://doi.org/10.5194/acp-12-7413-2012.
Edwards, P. M., and Coauthors, 2017: Transition from high- to low-NOx control of night-time oxidation in the southeastern US. Nature Geoscience, 10, 490−495, https://doi.org/10.1038/ngeo2976.
Ehn, M., and Coauthors, 2014: A large source of low-volatility secondary organic aerosol. Nature, 506, 476−479, https://doi.org/10.1038/nature13032.
Emanuelsson, E. U., and Coauthors, 2013: Formation of anthropogenic secondary organic aerosol (SOA) and its influence on biogenic SOA properties. Atmospheric Chemistry and Physics, 13, 2837−2855, https://doi.org/10.5194/acp-13-2837-2013.
Ensberg, J. J., and Coauthors, 2014: Emission factor ratios, SOA mass yields, and the impact of vehicular emissions on SOA formation. Atmospheric Chemistry and Physics, 14, 2383−2397, https://doi.org/10.5194/acp-14-2383-2014.
Ervens, B., B. J. Turpin, and R. J. Weber, 2011: Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): A review of laboratory, field and model studies. Atmospheric Chemistry and Physics, 11, 11 069−11 102, https://doi.org/10.5194/acp-11-11069-2011.
Farina, S. C., P. J. Adams, and S. N. Pandis, 2010: Modeling global secondary organic aerosol formation and processing with the volatility basis set: Implications for anthropogenic secondary organic aerosol. J. Geophys. Res. Atmos., 115, D09202, https://doi.org/10.1029/2009JD013046.
Faust, J. A., J. P. S. Wong, A. K. Y. Lee, and J. P. D. Abbatt, 2017: Role of aerosol liquid water in secondary organic aerosol formation from volatile organic compounds. Environ. Sci. Technol., 51, 1405−1413, https://doi.org/10.1021/acs.est.6b04700.
Fouqueau, A., M. Cirtog, M. Cazaunau, E. Pangui, J. F. Doussin, and B. Picquet-Varrault, 2020: A comparative and experimental study of the reactivity with nitrate radical of two terpenes: α-terpinene and γ-terpinene. Atmospheric Chemistry and Physics, 20, 15167−15189, https://doi.org/10.5194/acp-20-15167-2020.
Friedman, B., P. Brophy, W. H. Brune, and D. K. Farmer, 2016: Anthropogenic sulfur perturbations on biogenic oxidation: SO2 additions impact gas-phase OH oxidation products of α- and β-Pinene. Environ. Sci. Technol., 50, 1269−1279, https://doi.org/10.1021/acs.est.5b05010.
Fry, J. L., and Coauthors, 2009: Organic nitrate and secondary organic aerosol yield from NO3 oxidation of β-pinene evaluated using a gas-phase kinetics/aerosol partitioning model. Atmospheric Chemistry and Physics, 9, 1431−1449, https://doi.org/10.5194/acp-9-1431-2009.
Fry, J. L., and Coauthors, 2013: Observations of gas- and aerosol-phase organic nitrates at BEACHON-RoMBAS 2011. Atmospheric Chemistry and Physics, 13, 8585−8605, https://doi.org/10.5194/acp-13-8585-2013.
Fry, J. L., and Coauthors, 2014: Secondary organic aerosol formation and organic nitrate yield from NO3 oxidation of biogenic hydrocarbons. Environ. Sci. Technol., 48, 11 944−11 953, https://doi.org/10.1021/es502204x.
Fry, J. L., and Coauthors, 2018: Secondary organic aerosol (SOA) yields from NO3 radical + isoprene based on nighttime aircraft power plant plume transects. Atmospheric Chemistry and Physics, 18, 11 663−11 682, https://doi.org/10.5194/acp-18-11663-2018.
Fu, T. M., D. J. Jacob, F. Wittrock, J. P. Burrows, M. Vrekoussis, and D. K. Henze, 2008: Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols. J. Geophys. Res., 113, D15303, https://doi.org/10.1029/2007JD009505.
Gao, S., and Coauthors, 2004: Particle phase acidity and oligomer formation in secondary organic aerosol. Environ. Sci. Technol., 38, 6582−6589, https://doi.org/10.1021/es049125k.
Gaston, C. J., T. P. Riedel, Z. F. Zhang, A. Gold, J. D. Surratt, and J. A. Thornton, 2014: Reactive uptake of an isoprene-derived epoxydiol to submicron aerosol particles. Environ. Sci. Technol., 48, 11 178−11 186, https://doi.org/10.1021/es5034266.
Ge, X. L., A. S. Wexler, and S. L. Clegg, 2011: Atmospheric amines—Part I. A review. Atmos. Environ., 45, 524−546, https://doi.org/10.1016/j.atmosenv.2010.10.012.
George, C., M. Ammann, B. D'Anna, D. J. Donaldson, and S. A. Nizkorodov, 2015: Heterogeneous photochemistry in the atmosphere. Chemical Reviews, 115, 4218−4258, https://doi.org/10.1021/cr500648z.
Glasius, M., and A. H. Goldstein, 2016: Recent discoveries and future challenges in atmospheric organic chemistry. Environ. Sci. Technol., 50, 2754−2764, https://doi.org/10.1021/acs.est.5b05105.
Goldstein, A. H., C. D. Koven, C. L. Heald, and I. Y. Fung, 2009: Biogenic carbon and anthropogenic pollutants combine to form a cooling haze over the southeastern United States. Proceedings of the National Academy of Sciences of the United States of America, 106, 8835−8840, https://doi.org/10.1073/pnas.0904128106.
Griffin, R. J., D. R. Cocker III, R. C. Flagan, and J. H. Seinfeld, 1999: Organic aerosol formation from the oxidation of biogenic hydrocarbons. J. Geophys. Res. Atmos., 104, 3555−3567, https://doi.org/10.1029/1998JD100049.
Guenther, A. B., X. Jiang, C. L. Heald, T. Sakulyanontvittaya, T. Duhl, L. K. Emmons, and X. Wang, 2012: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5, 1471−1492, https://doi.org/10.5194/gmd-5-1471-2012.
Guo, H., and Coauthors, 2015: Fine-particle water and pH in the southeastern United States. Atmospheric Chemistry and Physics, 15, 5211−5228, https://doi.org/10.5194/acp-15-5211-2015.
Hallquist, M., I. Wängberg, E. Ljungstrom, I. Barnes, and K. H. Becker, 1999: Aerosol and product yields from NO3 radical-initiated oxidation of selected monoterpenes. Environ. Sci. Technol., 33, 553−559, https://doi.org/10.1021/es980292s.
Hallquist, M., and Coauthors, 2009: The formation, properties and impact of secondary organic aerosol: Current and emerging issues. Atmospheric Chemistry and Physics, 9, 5155−5236, https://doi.org/10.5194/acp-9-5155-2009.
Han, Y. M., C. A. Stroud, J. Liggio, and S. M. Li, 2016: The effect of particle acidity on secondary organic aerosol formation from α-pinene photooxidation under atmospherically relevant conditions. Atmospheric Chemistry and Physics, 16, 13 929−13 944, https://doi.org/10.5194/acp-16-13929-2016.
Hao, L. Q., E. Kari, A. Leskinen, D. R. Worsnop, and A. Virtanen, 2020: Direct contribution of ammonia to CCN-size α-pinene secondary organic aerosol formation. Atmospheric Chemistry and Physics Discussions, https://doi.org/10.5194/acp-2020-457.
Hayes, P. L., and Coauthors, 2015: Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010. Atmospheric Chemistry and Physics, 15, 5773−5801, https://doi.org/10.5194/acp-15-5773-2015.
He, Q. F., and Coauthors, 2014: Organosulfates from pinene and isoprene over the Pearl River Delta, South China: Seasonal variation and implication in formation mechanisms. Environ. Sci. Technol., 48, 9236−9245, https://doi.org/10.1021/es501299v.
He, Q. F., and Coauthors, 2018: Secondary organic aerosol formation from isoprene epoxides in the Pearl River Delta, south China: IEPOX- and HMML-derived tracers. J. Geophys. Res.Atmos., 123, 6999−7012, https://doi.org/10.1029/2017JD028242.
Heald, C. L., and Coauthors, 2008: Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change. J. Geophys. Res.Atmos., 113, D05211, https://doi.org/10.1029/2007JD009092.
Hennigan, C. J., J. Izumi, A. P. Sullivan, R. J. Weber, and A. Nenes, 2015: A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles. Atmospheric Chemistry and Physics, 15, 2775−2790, https://doi.org/10.5194/acp-15-2775-2015.
Hettiyadura, A. P. S., I. M. Al-Naiema, D. D. Hughes, T. Fang, and E. A. Stone, 2019: Organosulfates in Atlanta, Georgia: Anthropogenic influences on biogenic secondary organic aerosol formation. Atmospheric Chemistry and Physics, 19, 3191−3206, https://doi.org/10.5194/acp-19-3191-2019.
Hildebrandt, L., K. M. Henry, J. H. Kroll, D. R. Worsnop, S. N. Pandis, and N. M. Donahue, 2011: Evaluating the mixing of organic aerosol components using high-resolution aerosol mass spectrometry. Environ. Sci. Technol., 45, 6329−6335, https://doi.org/10.1021/es200825g.
Ho, K. F., S. C. Lee, S. S. H. Ho, K. Kawamura, E. Tachibana, Y. Cheng, and T. Zhu, 2010: Dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids, and benzoic acid in urban aerosols collected during the 2006 Campaign of Air Quality Research in Beijing (CAREBeijing-2006). J. Geophys. Res., 115, D19312, https://doi.org/10.1029/2009JD013304.
Hodzic, A., P. S. Kasibhatla, D. S. Jo, C. D. Cappa, J. L. Jimenez, S. Madronich, and R. J. Park, 2016: Rethinking the global secondary organic aerosol (SOA) budget: Stronger production, faster removal, shorter lifetime. Atmospheric Chemistry and Physics, 16, 7917−7941, https://doi.org/10.5194/acp-16-7917-2016.
Hoesly, R. M., and Coauthors, 2018: Historical (1750−2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geoscientific Model Development, 11, 369−408, https://doi.org/10.5194/gmd-11-369-2018.
Hoyle, C. R., G. Myhre, T. K. Berntsen, and I. S. A. Isaksen, 2009: Anthropogenic influence on SOA and the resulting radiative forcing. Atmospheric Chemistry and Physics, 9, 2715−2728, https://doi.org/10.5194/acp-9-2715-2009.
Hoyle, C. R., and Coauthors, 2011: A review of the anthropogenic influence on biogenic secondary organic aerosol. Atmospheric Chemistry and Physics, 11, 321−343, https://doi.org/10.5194/acp-11-321-2011.
Hu, J. L., and Coauthors, 2017: Modeling biogenic and anthropogenic secondary organic aerosol in China. Atmospheric Chemistry and Physics, 17, 77−92, https://doi.org/10.5194/acp-17-77-2017.
Huang, H. L., W. Chao, and J. J. M. Lin, 2015: Kinetics of a Criegee intermediate that would survive high humidity and may oxidize atmospheric SO2. Proceedings of the National Academy of Sciences of the United States of America, 112, 10 857−10 862, https://doi.org/10.1073/pnas.1513149112.
Huang, R. J., and Coauthors, 2014: High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 514, 218−222, https://doi.org/10.1038/nature13774.
Huang, W., H. Saathoff, X. L. Shen, R. Ramisetty, T. Leisner, and C. Mohr, 2019: Chemical characterization of highly functionalized organonitrates contributing to night-time organic aerosol mass loadings and particle growth. Environ. Sci. Technol., 53, 1165−1174, https://doi.org/10.1021/acs.est.8b05826.
Huang, Y., S. C. Lee, K. F. Ho, S. S. H. Ho, N. Y. Cao, Y. Cheng, and Y. Gao, 2012: Effect of ammonia on ozone-initiated formation of indoor secondary products with emissions from cleaning products. Atmos. Environ., 59, 224−231, https://doi.org/10.1016/j.atmosenv.2012.04.059.
Iinuma, Y., O. Böge, T. Gnauk, and H. Herrmann, 2004: Aerosol-chamber study of the α-pinene/O3 reaction: Influence of particle acidity on aerosol yields and products. Atmos. Environ., 38, 761−773, https://doi.org/10.1016/j.atmosenv.2003.10.015.
Iinuma, Y., A. Kahnt, A. Mutzel, O. Böge, and H. Herrmann, 2013: Ozone-driven secondary organic aerosol production chain. Environ. Sci. Technol., 47, 3639−3647, https://doi.org/10.1021/es305156z.
Jang, M., N. M. Czoschke, S. Lee, and R. M. Kamens, 2002: Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions. Science, 298, 814−817, https://doi.org/10.1126/science.1075798.
Jaoui, M., T. E. Kleindienst, K. S. Docherty, M. Lewandowski, and J. H. Offenberg, 2013: Secondary organic aerosol formation from the oxidation of a series of sesquiterpenes: α-cedrene, β-caryophyllene, α-humulene and α-farnesene with O3, OH and NO3 radicals. Environmental Chemistry, 10, 178−193, https://doi.org/10.1071/EN13025.
Jathar, S. H., C. D. Cappa, A. S. Wexler, J. H. Seinfeld, and M. J. Kleeman, 2016: Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model—Part 1: Assessing the influence of constrained multi-generational ageing. Atmospheric Chemistry and Physics, 16, 2309−2322, https://doi.org/10.5194/acp-16-2309-2016.
Jiang, J. H., and Coauthors, 2019: Sources of organic aerosols in Europe: A modeling study using CAMx with modified volatility basis set scheme. Atmospheric Chemistry and Physics, 19, 15 247−15 270, https://doi.org/10.5194/acp-19-15247-2019.
Kawamura, K., and S. Bikkina, 2016: A review of dicarboxylic acids and related compounds in atmospheric aerosols: Molecular distributions, sources and transformation. Atmospheric Research, 170, 140−160, https://doi.org/10.1016/j.atmosres.2015.11.018.
Kelly, J. M., R. M. Doherty, F. M. O’Connor, and G. W. Mann, 2018: The impact of biogenic, anthropogenic, and biomass burning volatile organic compound emissions on regional and seasonal variations in secondary organic aerosol. Atmospheric Chemistry and Physics, 18, 7393−7422, https://doi.org/10.5194/acp-18-7393-2018.
Kiendler-Scharr, A., and Coauthors, 2016: Ubiquity of organic nitrates from nighttime chemistry in the European submicron aerosol. Geophys. Res. Lett., 43, 7735−7744, https://doi.org/10.1002/2016GL069239.
Kim, H., B. Barkey, and S. E. Paulson, 2010: Real refractive indices of α- and β-pinene and toluene secondary organic aerosols generated from ozonolysis and photo-oxidation. J. Geophys. Res. Atmos., 115, D24212, https://doi.org/10.1029/2010JD014549.
Kim, H., B. Barkey, and S. E. Paulson, 2012: Real refractive indices and formation yields of secondary organic aerosol generated from photooxidation of limonene and α-pinene: The effect of the HC/NOx ratio. Journal of Physical Chemistry A, 116, 6059−6067, https://doi.org/10.1021/jp301302z.
King, S. M., and Coauthors, 2010: Cloud droplet activation of mixed organic-sulfate particles produced by the photooxidation of isoprene. Atmospheric Chemistry and Physics, 10, 3953−3964, https://doi.org/10.5194/acp-10-3953-2010.
Kleindienst, T. E., E. O. Edney, M. Lewandowski, J. H. Offenberg, and M. Jaoui, 2006: Secondary organic carbon and aerosol yields from the irradiations of isoprene and α-pinene in the presence of NOx and SO2. Environ. Sci. Technol., 40, 3807−3812, https://doi.org/10.1021/es052446r.
Kourtchev, I., and Coauthors, 2014: Effects of anthropogenic emissions on the molecular composition of urban organic aerosols: An ultrahigh resolution mass spectrometry study. Atmos. Environ., 89, 525−532, https://doi.org/10.1016/j.atmosenv.2014.02.051.
Kristensen, K., T. Cui, H. Zhang, A. Gold, M. Glasius, and J. D. Surratt, 2014: Dimers in α-pinene secondary organic aerosol: Effect of hydroxyl radical, ozone, relative humidity and aerosol acidity. Atmospheric Chemistry and Physics, 14, 4201−4218, https://doi.org/10.5194/acp-14-4201-2014.
Kroll, J. H., and J. H. Seinfeld, 2008: Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere. Atmos. Environ., 42, 3593−3624, https://doi.org/10.1016/j.atmosenv.2008.01.003.
Kroll, J. H., N. L. Ng, S. M. Murphy, R. C. Flagan, and J. H. Seinfeld, 2005: Secondary organic aerosol formation from isoprene photooxidation under high-NOx conditions. Geophys. Res. Lett., 32, L18808, https://doi.org/10.1029/2005GL023637.
Kroll, J. H., N. L. Ng, S. M. Murphy, R. C. Flagan, and J. H. Seinfeld, 2006: Secondary organic aerosol formation from isoprene photooxidation. Environ. Sci. Technol., 40, 1869−1877, https://doi.org/10.1021/es0524301.
La, Y. S., and Coauthors, 2016: Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: Explicit modeling of SOA formation from alkane and alkene oxidation. Atmospheric Chemistry and Physics, 16, 1417−1431, https://doi.org/10.5194/acp-16-1417-2016.
Laskin, J., A. Laskin, P. J. Roach, G. W. Slysz, G. A. Anderson, S. A. Nizkorodov, D. L. Bones, and L. Q. Nguyen, 2010: High-resolution desorption electrospray ionization mass spectrometry for chemical characterization of organic aerosols. Analytical Chemistry, 82, 2048−2058, https://doi.org/10.1021/ac902801f.
Laskin, J., and Coauthors, 2014: Molecular selectivity of brown carbon chromophores. Environ. Sci. Technol., 48, 12 047−12 055, https://doi.org/10.1021/es503432r.
Lee, A., A. H. Goldstein, J. H. Kroll, N. L. Ng, V. Varutbangkul, R. C. Flagan, and J. H. Seinfeld, 2006: Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes. J. Geophys. Res., 111, D17305, https://doi.org/10.1029/2006JD007050.
Lee, H. J., A. Laskin, J. Laskin, and S. A. Nizkorodov, 2013: Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols. Environ. Sci. Technol., 47, 5763−5770, https://doi.org/10.1021/es400644c.
Lee, H. J., P. K. Aiona, A. Laskin, J. Laskin, and S. A. Nizkorodov, 2014: Effect of solar radiation on the optical properties and molecular composition of laboratory proxies of atmospheric brown carbon. Environ. Sci. Technol., 48, 10 217−10 226, https://doi.org/10.1021/es502515r.
Lee, J. W., V. Carrascón, P. J. Gallimore, S. J. Fuller, A. Björkegren, D. R. Spring, F. D. Pope and M. Kalberer, 2012: The effect of humidity on the ozonolysis of unsaturated compounds in aerosol particles. Physical Chemistry Chemical Physics, 14, 8023−8031, https://doi.org/10.1039/C2CP24094G.
Lelieveld, J., J. S. Evans, M. Fnais, D. Giannadaki, and A. Pozzer, 2015: The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525, 367−371, https://doi.org/10.1038/nature15371.
Li, H. Y., and Coauthors, 2017a: Wintertime aerosol chemistry and haze evolution in an extremely polluted city of the North China Plain: Significant contribution from coal and biomass combustion. Atmospheric Chemistry and Physics, 17, 4751−4768, https://doi.org/10.5194/acp-17-4751-2017.
Li, J. J., and Coauthors, 2013: Abundance, composition and source of atmospheric PM2.5 at a remote site in the Tibetan Plateau, China. Tellus B, 65, 20281, https://doi.org/10.3402/tellusb.v65i0.20281.
Li, S. M., and Coauthors, 2017b: Differences between measured and reported volatile organic compound emissions from oil sands facilities in Alberta, Canada. Proceedings of the National Academy of Sciences of the United States of America, 114, E3756−E3765, https://doi.org/10.1073/pnas.1617862114.
Liao, H., W. Y. Chang, and Y. Yang, 2015: Climatic effects of air pollutants over china: A review. Adv. Atmos. Sci., 32, 115−139, https://doi.org/10.1007/s00376-014-0013-x.
Lim, H. J., A. G. Carlton, and B. J. Turpin, 2005: Isoprene forms secondary organic aerosol through cloud processing: Model simulations. Environ. Sci. Technol., 39, 4441−4446, https://doi.org/10.1021/es048039h.
Lin, G., S. Sillman, J. E. Penner, and A. Ito, 2014: Global modeling of SOA: The use of different mechanisms for aqueous-phase formation. Atmospheric Chemistry and Physics, 14, 5451−5475, https://doi.org/10.5194/acp-14-5451-2014.
Lin, Y. H., and Coauthors, 2012: Isoprene epoxydiols as precursors to secondary organic aerosol formation: Acid-catalyzed reactive uptake studies with authentic compounds. Environ. Sci. Technol., 46, 250−258, https://doi.org/10.1021/es202554c.
Lin, Y. H., E. M. Knipping, E. S. Edgerton, S. L. Shaw, and J. D. Surratt, 2013a: Investigating the influences of SO2 and NH3 levels on isoprene-derived secondary organic aerosol formation using conditional sampling approaches. Atmospheric Chemistry and Physics, 13, 8457−8470, https://doi.org/10.5194/acp-13-8457-2013.
Lin, Y. H., and Coauthors, 2013b: Epoxide as a precursor to secondary organic aerosol formation from isoprene photooxidation in the presence of nitrogen oxides. Proceedings of the National Academy of Sciences of the United States of America, 110, 6718−6723, https://doi.org/10.1073/pnas.1221150110.
Liu, J., and Coauthors, 2018: Regional similarities and NOx-related increases in biogenic secondary organic aerosol in summertime southeastern United States. J. Geophys. Res.Atmos., 123, 10 620−10 636, https://doi.org/10.1029/2018JD028491.
Liu, J. M., and Coauthors, 2016: Efficient isoprene secondary organic aerosol formation from a non-IEPOX pathway. Environ. Sci. Technol., 50, 9872−9880, https://doi.org/10.1021/acs.est.6b01872.
Liu, M. X., and Coauthors, 2019: Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain. Proceedings of the National Academy of Sciences of the United States of America, 116, 7760−7765, https://doi.org/10.1073/pnas.1814880116.
Liu, S. J., L. Jia, Y. F. Xu, N. T. Tsona, S. S. Ge, and L. Du, 2017: Photooxidation of cyclohexene in the presence of SO2: SOA yield and chemical composition. Atmospheric Chemistry and Physics, 17, 13 329−13 343, https://doi.org/10.5194/acp-17-13329-2017.
Liu, Y. C., Q. X. Ma, and H. He, 2012: Heterogeneous uptake of amines by citric acid and humic acid. Environ. Sci. Technol., 46, 11 112−11 118, https://doi.org/10.1021/es302414v.
Liu, Y., J. Liggio, R. Staebler, and S. M. Li, 2015: Reactive uptake of ammonia to secondary organic aerosols: Kinetics of organonitrogen formation. Atmospheric Chemistry and Physics, 15, 13 569−13 584, https://doi.org/10.5194/acp-15-13569-2015.
Loza, C. L., M. M. Coggon, T. B. Nguyen, A. Zuend, R. C. Flagan, and J. H. Seinfeld, 2013: On the mixing and evaporation of secondary organic aerosol components. Environ. Sci. Technol., 47, 6173−6180, https://doi.org/10.1021/es400979k.
Lu, M. M., and Coauthors, 2019: Investigating the Transport Mechanism of PM2.5 Pollution during January 2014 in Wuhan, Central China. Adv. Atmos. Sci., 36, 1217−1234, https://doi.org/10.1007/s00376-019-8260-5.
Ma, J. Z., X. B. Xu, C. S. Zhao, and P. Yan, 2012: A review of atmospheric chemistry research in China: Photochemical smog, haze pollution, and gas-aerosol interactions. Adv. Atmos. Sci., 29, 1006−1026, https://doi.org/10.1007/s00376-012-1188-7.
Ma, Q., X. X. Lin, C. Q. Yang, B. Long, Y. B. Gai, and W. J. Zhang, 2018: The influences of ammonia on aerosol formation in the ozonolysis of styrene: Roles of Criegee intermediate reactions. Royal Society Open Science, 5, 172171, https://doi.org/10.1098/rsos.172171.
Mackenzie-Rae, F. A., H. J. Wallis, A. R. Rickard, K. L. Pereira, S. M. Saunders, X. M. Wang, and J. F. Hamilton, 2018: Ozonolysis of α-phellandrene - Part 2: Compositional analysis of secondary organic aerosol highlights the role of stabilised Criegee intermediates. Atmospheric Chemistry and Physics, 18, 4673−4693, https://doi.org/10.5194/acp-18-4673-2018.
Marais, E. A., D. J. Jacob, J. R. Turner, and L. J. Mickley, 2017: Evidence of 1991−2013 decrease of biogenic secondary organic aerosol in response to SO2 emission controls. Environmental Research Letters, 12, 054018, https://doi.org/10.1088/1748-9326/aa69c8.
Matsui, H., M. Koike, Y. Kondo, A. Takami, J. D. Fast, Y. Kanaya, and M. Takigawa, 2014: Volatility basis-set approach simulation of organic aerosol formation in East Asia: Implications for anthropogenic-biogenic interaction and controllable amounts. Atmospheric Chemistry and Physics, 14, 9513−9535, https://doi.org/10.5194/acp-14-9513-2014.
Mauldin III, R. L., and Coauthors, 2012: A new atmospherically relevant oxidant of sulphur dioxide. Nature, 488, 193−196, https://doi.org/10.1038/nature11278.
May, A. A., and Coauthors, 2013: Gas-particle partitioning of primary organic aerosol emissions: 3. Biomass burning. J. Geophys. Res., 118, 11 327−11 338, https://doi.org/10.1002/jgrd.50828.
Meng, J. J., and Coauthors, 2014: Seasonal characteristics of oxalic acid and related SOA in the free troposphere of Mt. Hua, central China: Implications for sources and formation mechanisms. Science of the Total Environment, 493, 1088−1097, https://doi.org/10.1016/j.scitotenv.2014.04.086.
Meng, Z. Y., and Coauthors, 2018: Role of ambient ammonia in particulate ammonium formation at a rural site in the North China Plain. Atmospheric Chemistry and Physics, 18, 167−184, https://doi.org/10.5194/acp-18-167-2018.
Moise, T., J. M. Flores, and Y. Rudich, 2015: Optical properties of secondary organic aerosols and their changes by chemical processes. Chemical Reviews, 115, 4400−4439, https://doi.org/10.1021/cr5005259.
Na, K., C. Song, and D. R. Cocker III, 2006: Formation of secondary organic aerosol from the reaction of styrene with ozone in the presence and absence of ammonia and water. Atmos. Environ., 40, 1889−1900, https://doi.org/10.1016/j.atmosenv.2005.10.063.
Na, K., C. Song, C. Switzer, and D. R. Cocker, 2007: Effect of ammonia on secondary organic aerosol formation from α-pinene ozonolysis in dry and humid conditions. Environ. Sci. Technol., 41, 6096−6102, https://doi.org/10.1021/es061956y.
Newland, M. J., and Coauthors, 2018: The atmospheric impacts of monoterpene ozonolysis on global stabilised Criegee intermediate budgets and SO2 oxidation: Experiment, theory and modelling. Atmospheric Chemistry and Physics, 18, 6095−6120, https://doi.org/10.5194/acp-18-6095-2018.
Ng, N. L., J. H. Kroll, A. W. H. Chan, P. S. Chhabra, R. C. Flagan, and J. H. Seinfeld, 2007a: Secondary organic aerosol formation from m-xylene, toluene, and benzene. Atmospheric Chemistry and Physics, 7, 3909−3922, https://doi.org/10.5194/acp-7-3909-2007.
Ng, N. L., and Coauthors, 2007b: Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes. Atmospheric Chemistry and Physics, 7, 5159−5174, https://doi.org/10.5194/acp-7-5159-2007.
Ng, N. L., and Coauthors, 2017: Nitrate radicals and biogenic volatile organic compounds: Oxidation, mechanisms, and organic aerosol. Atmospheric Chemistry and Physics, 17, 2103−2162, https://doi.org/10.5194/acp-17-2103-2017.
Nguyen, T. B., and Coauthors, 2014: Organic aerosol formation from the reactive uptake of isoprene epoxydiols (IEPOX) onto non-acidified inorganic seeds. Atmospheric Chemistry and Physics, 14, 3497−3510, https://doi.org/10.5194/acp-14-3497-2014.
Nguyen, T. B., and Coauthors, 2015: Mechanism of the hydroxyl radical oxidation of methacryloyl peroxynitrate (MPAN) and its pathway toward secondary organic aerosol formation in the atmosphere. Physical Chemistry Chemical Physics, 17, 17 914−17 926, https://doi.org/10.1039/C5CP02001H.
Niu, X. Y., and Coauthors, 2017: Indoor secondary organic aerosols formation from ozonolysis of monoterpene: An example of d-limonene with ammonia and potential impacts on pulmonary inflammations. Science of the Total Environment, 579, 212−220, https://doi.org/10.1016/j.scitotenv.2016.11.018.
Nøjgaard, J. K., M. Bilde, C. Stenby, O. J. Nielsen, and P. Wolkoff, 2006: The effect of nitrogen dioxide on particle formation during ozonolysis of two abundant monoterpenes indoors. Atmos. Environ., 40, 1030−1042, https://doi.org/10.1016/j.atmosenv.2005.11.029.
Odum, J. R., T. Hoffmann, F. Bowman, D. Collins, R. C. Flagan, and J. H. Seinfeld, 1996: Gas/particle partitioning and secondary organic aerosol yields. Environ. Sci. Technol., 30, 2580−2585, https://doi.org/10.1021/es950943+.
Offenberg, J. H., M. Lewandowski, E. O. Edney, T. E. Kleindienst, and M. Jaoui, 2009: Influence of aerosol acidity on the formation of secondary organic aerosol from biogenic precursor hydrocarbons. Environ. Sci. Technol., 43, 7742−7747, https://doi.org/10.1021/es901538e.
Pandis, S. N., S. E. Paulson, J. H. Seinfeld, and R. C. Flagan, 1991: Aerosol formation in the photooxidation of isoprene and β-pinene. Atmospheric Environment. Part A. General Topics, 25, 997−1008, https://doi.org/10.1016/0960-1686(91)90141-S.
Pankow, J. F., 1994a: An absorption model of gas/particle partitioning of organic compounds in the atmosphere. Atmos. Environ., 28, 185−188, https://doi.org/10.1016/1352-2310(94)90093-0.
Pankow, J. F., 1994b: An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol. Atmos. Environ., 28, 189−193, https://doi.org/10.1016/1352-2310(94)90094-9.
Perraud, V., and Coauthors, 2012: Nonequilibrium atmospheric secondary organic aerosol formation and growth. Proceedings of the National Academy of Sciences of the United States of America, 109, 2836−2841, https://doi.org/10.1073/pnas.1119909109.
Presto, A. A., K. E. H. Hartz, and N. M. Donahue, 2005: Secondary organic aerosol production from terpene ozonolysis. 2. Effect of NOx concentration. Environ. Sci. Technol., 39, 7046−7054, https://doi.org/10.1021/es050400s.
Pye, H. O. T., and Coauthors, 2013: Epoxide pathways improve model predictions of isoprene markers and reveal key role of acidity in aerosol formation. Environ. Sci. Technol., 47, 11 056−11 064, https://doi.org/10.1021/es402106h.
Qin, M. M., and Coauthors, 2018a: Simulating biogenic secondary organic aerosol during summertime in China. J. Geophys. Res. Atmos., 123, 11 100−11 119, https://doi.org/10.1029/2018JD029185.
Qin, M. M., and Coauthors, 2018b: Modeling biogenic secondary organic aerosol (BSOA) formation from monoterpene reactions with NO3: A case study of the SOAS campaign using CMAQ. Atmos. Environ., 184, 146−155, https://doi.org/10.1016/j.atmosenv.2018.03.042.
Qiu, C., and R. Y. Zhang, 2013: Multiphase chemistry of atmospheric amines. Physical Chemistry Chemical Physics, 15, 5738−5752, https://doi.org/10.1039/C3CP43446J.
Rattanavaraha, W., and Coauthors, 2016: Assessing the impact of anthropogenic pollution on isoprene-derived secondary organic aerosol formation in PM2.5 collected from the Birmingham, Alabama, ground site during the 2013 Southern Oxidant and Aerosol Study. Atmospheric Chemistry and Physics, 16, 4897−4914, https://doi.org/10.5194/acp-16-4897-2016.
Ren, Y. Q., and Coauthors, 2018: Seasonal variation and size distribution of biogenic secondary organic aerosols at urban and continental background sites of China. Journal of Environmental Sciences, 71, 32−44, https://doi.org/10.1016/j.jes.2017.11.016.
Ren, Y. Q., and Coauthors, 2019: Seasonal characteristics of biogenic secondary organic aerosols at Mt. Wuyi in Southeastern China: Influence of anthropogenic pollutants. Environmental Pollution, 252, 493−500, https://doi.org/10.1016/j.envpol.2019.05.077.
Riipinen, I., T. Yli-Juuti, J. R. Pierce, T. Petäjä, D. R. Worsnop, M. Kulmala, and N. M. Donahue, 2012: The contribution of organics to atmospheric nanoparticle growth. Nature Geoscience, 5, 453−458, https://doi.org/10.1038/ngeo1499.
Riva, M., S. H. Budisulistiorini, Z. F. Zhang, A. Gold, and J. D. Surratt, 2016a: Chemical characterization of secondary organic aerosol constituents from isoprene ozonolysis in the presence of acidic aerosol. Atmos. Environ., 130, 5−13, https://doi.org/10.1016/j.atmosenv.2015.06.027.
Riva, M., and Coauthors, 2016b: Effect of organic coatings, humidity and aerosol acidity on multiphase chemistry of isoprene epoxydiols. Environ. Sci. Technol., 50, 5580−5588, https://doi.org/10.1021/acs.est.5b06050.
Riva, M., and Coauthors, 2016c: Chemical characterization of secondary organic aerosol from oxidation of isoprene hydroxyhydroperoxides. Environ. Sci. Technol., 50, 9889−9899, https://doi.org/10.1021/acs.est.6b02511.
Robinson, E. S., R. Saleh, and N. M. Donahue, 2013: Organic aerosol mixing observed by single-particle mass spectrometry. The Journal of Physical Chemistry A, 117, 13 935−13 945, https://doi.org/10.1021/jp405789t.
Robinson, E. S., R. Saleh, and N. M. Donahue, 2015: Probing the evaporation dynamics of mixed SOA/squalane particles using size-resolved composition and single-particle measurements. Environ. Sci. Technol., 49, 9724−9732, https://doi.org/10.1021/acs.est.5b01692.
Rollins, A. W., and Coauthors, 2012: Evidence for NOx control over nighttime SOA formation. Science, 337, 1210−1212, https://doi.org/10.1126/science.1221520.
Saathoff, H., and Coauthors, 2009: Temperature dependence of yields of secondary organic aerosols from the ozonolysis of α-pinene and limonene. Atmospheric Chemistry and Physics, 9, 1551−1577, https://doi.org/10.5194/acp-9-1551-2009.
Sareen, N., S. G. Moussa, and V. F. McNeill, 2013: Photochemical aging of light-absorbing secondary organic aerosol material. The Journal of Physical Chemistry A, 117, 2987−2996, https://doi.org/10.1021/jp309413j.
Sarrafzadeh, M., and Coauthors, 2016: Impact of NOx and OH on secondary organic aerosol formation from β-pinene photooxidation. Atmospheric Chemistry and Physics, 16, 11 237−11 248, https://doi.org/10.5194/acp-16-11237-2016.
Shi, G. L., and Coauthors, 2017: pH of aerosols in a polluted atmosphere: Source contributions to highly acidic aerosol. Environ. Sci. Technol., 51, 4289−4296, https://doi.org/10.1021/acs.est.6b05736.
Shrivastava, M., and Coauthors, 2017: Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. Reviews of Geophysics, 55, 509−559, https://doi.org/10.1002/2016RG000540.
Sipila, M., and Coauthors, 2014: Reactivity of stabilized Criegee intermediates (sCIs) from isoprene and monoterpene ozonolysis toward SO2 and organic acids. Atmospheric Chemistry and Physics, 14, 12 143−12 153, https://doi.org/10.5194/acp-14-12143-2014.
Slade, J. H., and Coauthors, 2019: Bouncier particles at night: Biogenic secondary organic aerosol chemistry and sulfate drive diel variations in the aerosol phase in a mixed forest. Environ. Sci. Technol., 53, 4977−4987, https://doi.org/10.1021/acs.est.8b07319.
Smith, S. J., H. Pitcher, and T. M. L. Wigley, 2001: Global and regional anthropogenic sulfur dioxide emissions. Global and Planetary Change, 29, 99−119, https://doi.org/10.1016/S0921-8181(00)00057-6.
Song, C., and Coauthors, 2007: Effect of hydrophobic primary organic aerosols on secondary organic aerosol formation from ozonolysis of α-pinene. Geophys. Res. Lett., 34, L20803, https://doi.org/10.1029/2007GL030720.
Stangl, C. M., J. M. Krasnomowitz, M. J. Apsokardu, L. Tiszenkel, Q. Ouyang, S. Lee, and M. V. Johnston, 2019: Sulfur dioxide modifies aerosol particle formation and growth by ozonolysis of monoterpenes and isoprene. J. Geophys. Res. Atmos., 124, 4800−4811, https://doi.org/10.1029/2018JD030064.
Stirnweis, L., and Coauthors, 2017: Assessing the influence of NOx concentrations and relative humidity on secondary organic aerosol yields from α-pinene photo-oxidation through smog chamber experiments and modelling calculations. Atmospheric Chemistry and Physics, 17, 5035−5061, https://doi.org/10.5194/acp-17-5035-2017.
Stropoli, S. J., and M. J. Elrod, 2015: Assessing the Potential for the Reactions of Epoxides with Amines on Secondary Organic Aerosol Particles. Journal of Physical Chemistry A, 119, 10181−10189, https://doi.org/10.1021/acs.jpca.5b07852.
Surratt, J. D., M. Lewandowski, J. H. Offenberg, M. Jaoui, T. E. Kleindienst, E. O. Edney, and J. H. Seinfeld, 2007: Effect of acidity on secondary organic aerosol formation from isoprene. Environ. Sci. Technol., 41, 5363−5369, https://doi.org/10.1021/es0704176.
Surratt, J. D., and Coauthors, 2010: Reactive intermediates revealed in secondary organic aerosol formation from isoprene. Proceedings of the National Academy of Sciences of the United States of America, 107, 6640−6645, https://doi.org/10.1073/pnas.0911114107.
Tao, J., T. T. Cheng, R. J. Zhang, J. J. Cao, L. H. Zhu, Q. Y. Wang, L. Luo, and L. M. Zhang, 2013: Chemical composition of PM2.5 at an urban site of Chengdu in southwestern China. Adv. Atmos. Sci., 30, 1070−1084, https://doi.org/10.1007/s00376-012-2168-7.
Tasoglou, A., and S. N. Pandis, 2015: Formation and chemical aging of secondary organic aerosol during the β-caryophyllene oxidation. Atmospheric Chemistry and Physics, 15, 6035−6046, https://doi.org/10.5194/acp-15-6035-2015.
Tsimpidi, A. P., V. A. Karydis, S. N. Pandis, and J. Lelieveld, 2016: Global combustion sources of organic aerosols: Model comparison with 84 AMS factor-analysis data sets. Atmospheric Chemistry and Physics, 16, 8939−8962, https://doi.org/10.5194/acp-16-8939-2016.
Updyke, K. M., T. B. Nguyen, and S. A. Nizkorodov, 2012: Formation of brown carbon via reactions of ammonia with secondary organic aerosols from biogenic and anthropogenic precursors. Atmos. Environ., 63, 22−31, https://doi.org/10.1016/j.atmosenv.2012.09.012.
Vaden, T. D., C. Song, R. A. Zaveri, D. Imre, and A. Zelenyuk, 2010: Morphology of mixed primary and secondary organic particles and the adsorption of spectator organic gases during aerosol formation. Proceedings of the National Academy of Sciences of the United States of America, 107, 6658−6663, https://doi.org/10.1073/pnas.0911206107.
Vereecken, L., D. R. Glowacki, and M. J. Pilling, 2015: Theoretical chemical kinetics in tropospheric chemistry: Methodologies and applications. Chemical Reviews, 115, 4063−4114, https://doi.org/10.1021/cr500488p.
von Hessberg, C., P. von Hessberg, U. Pöschl, M. Bilde, O. J. Nielsen, and G. K. Moortgat, 2009: Temperature and humidity dependence of secondary organic aerosol yield from the ozonolysis of β-pinene. Atmospheric Chemistry and Physics, 9, 3583−3599, https://doi.org/10.5194/acp-9-3583-2009.
von Schneidemesser, E., and Coauthors, 2015: Chemistry and the linkages between air Quality and climate change. Chemical Reviews, 115, 3856−3897, https://doi.org/10.1021/acs.chemrev.5b00089.
Wang, G. H., and Coauthors, 2012: Molecular distribution and stable carbon isotopic composition of dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls in size-resolved atmospheric particles from Xi'an City, China. Environ. Sci. Technol., 46, 4783−4791, https://doi.org/10.1021/es204322c.
Wang, G. H., C. L. Cheng, J. J. Meng, Y. Huang, J. J. Li, and Y. Q. Ren, 2015: Field observation on secondary organic aerosols during Asian dust storm periods: Formation mechanism of oxalic acid and related compounds on dust surface. Atmos. Environ., 113, 169−176, https://doi.org/10.1016/j.atmosenv.2015.05.013.
Wang, H. C., and Coauthors, 2020a: NO3 and N2O5 chemistry at a suburban site during the EXPLORE-YRD campaign in 2018. Atmos. Environ., 224, 117180, https://doi.org/10.1016/j.atmosenv.2019.117180.
Wang, Q. Q., and Coauthors, 2020b: Seasonal characterization of aerosol composition and sources in a polluted city in Central China. Chemosphere, 258, 127310, https://doi.org/10.1016/j.chemosphere.2020.127310.
Wang, S. Y., and Coauthors, 2019: Organic peroxides and sulfur dioxide in aerosol: Source of particulate sulfate. Environ. Sci. Technol., 53, 10 695−10 704, https://doi.org/10.1021/acs.est.9b02591.
Wang, W., and Coauthors, 2008: Polar organic tracers in PM2.5 aerosols from forests in eastern China. Atmospheric Chemistry and Physics, 8, 7507−7518, https://doi.org/10.5194/acp-8-7507-2008.
Wang, X. F., and Coauthors, 2013: Size distributions of aerosol sulfates and nitrates in Beijing during the 2008 Olympic Games: Impacts of pollution control measures and regional transport. Adv. Atmos. Sci., 30, 341−353, https://doi.org/10.1007/s00376-012-2053-4.
Wang, X. F., and Coauthors, 2010: Evidence for high molecular weight nitrogen-containing organic salts in urban aerosols. Environmental Science & Technology, 44, 4441−4446, https://doi.org/10.1021/es1001117.
Warner, J. X., R. R. Dickerson, Z. Wei, L. L. Strow, Y. Wang, and Q. Liang, 2017: Increased atmospheric ammonia over the world's major agricultural areas detected from space. Geophys. Res. Lett., 44, 2875−2884, https://doi.org/10.1002/2016GL072305.
Wayne, R. P., and Coauthors, 1991: The nitrate radical: Physics, chemistry, and the atmosphere. Atmospheric Environment. Part A. General Topics, 25, 1−203, https://doi.org/10.1016/0960-1686(91)90192-A.
Weber, R. J., H. Y. Guo, A. G. Russell, and A. Nenes, 2016: High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years. Nature Geoscience, 9, 282−285, https://doi.org/10.1038/ngeo2665.
Wildt, J., and Coauthors, 2014: Suppression of new particle formation from monoterpene oxidation by NOx. Atmospheric Chemistry and Physics, 14, 2789−2804, https://doi.org/10.5194/acp-14-2789-2014.
Worton, D. R., and Coauthors, 2013: Observational insights into aerosol formation from isoprene. Environ. Sci. Technol., 47, 11 403−11 413, https://doi.org/10.1021/es4011064.
Wu, K., and Coauthors, 2020: Estimation of biogenic VOC emissions and their corresponding impact on ozone and secondary organic aerosol formation in China. Atmospheric Research, 231, 104656, https://doi.org/10.1016/j.atmosres.2019.104656.
Xia, Y. M., Z. Yu, and C. P. Nielsen, 2016: Benefits of China's efforts in gaseous pollutant control indicated by the bottom-up emissions and satellite observations 2000−2014. Atmos. Environ., 136, 43−53, https://doi.org/10.1016/j.atmosenv.2016.04.013.
Xing, L., and Coauthors, 2019: Wintertime secondary organic aerosol formation in Beijing—Tianjin−Hebei (BTH): Contributions of HONO sources and heterogeneous reactions. Atmospheric Chemistry and Physics, 19, 2343−2359, https://doi.org/10.5194/acp-19-2343-2019.
Xu, L., and Coauthors, 2015b: Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States. Proceedings of the National Academy of Sciences of the United States of America, 112, 37−42, https://doi.org/10.1073/pnas.1417609112.
Xu, L., M. S. Kollman, C. Song, J. E. Shilling, and N. L. Ng, 2014: Effects of NOx on the volatility of secondary organic aerosol from isoprene photooxidation. Environ. Sci. Technol., 48, 2253−2262, https://doi.org/10.1021/es404842g.
Xu, L., S. Suresh, H. Guo, R. J. Weber, and N. L. Ng, 2015a: Aerosol characterization over the southeastern United States using high-resolution aerosol mass spectrometry: Spatial and seasonal variation of aerosol composition and sources with a focus on organic nitrates. Atmospheric Chemistry and Physics, 15, 7307−7336, https://doi.org/10.5194/acp-15-7307-2015.
Xu, L., H. O. T. Pye, J. He, Y. L. Chen, B. N. Murphy, and N. L. Ng, 2018: Experimental and model estimates of the contributions from biogenic monoterpenes and sesquiterpenes to secondary organic aerosol in the southeastern United States. Atmospheric Chemistry and Physics, 18, 12 613−12 637, https://doi.org/10.5194/acp-18-12613-2018.
Xu, L., N. T. Tsona, B. You, Y. N. Zhang, S. Y. Wang, Z. M. Yang, L. K. Xue, and L. Du, 2020: NOx enhances secondary organic aerosol formation from nighttime γ-terpinene ozonolysis. Atmos. Environ., 225, 117375, https://doi.org/10.1016/j.atmosenv.2020.117375.
Ye, J. H., J. P. D. Abbatt, and A. W. H. Chan, 2018: Novel pathway of SO2 oxidation in the atmosphere: Reactions with monoterpene ozonolysis intermediates and secondary organic aerosol. Atmospheric Chemistry and Physics, 18, 5549−5565, https://doi.org/10.5194/acp-18-5549-2018.
Yee, L. D., and Coauthors, 2020: Natural and anthropogenically influenced isoprene oxidation in southeastern United States and central Amazon. Environ. Sci. Technol., 54, 5980−5991, https://doi.org/10.1021/acs.est.0c00805.
Yu, J. Z., X. F. Huang, J. H. Xu, and M. Hu, 2005: When aerosol sulfate goes up, so does oxalate: Implication for the formation mechanisms of oxalate. Environ. Sci. Technol., 39, 128−133, https://doi.org/10.1021/es049559f.
Yu, K. Y., Q. Zhu, K. Du, and X. F. Huang, 2019: Characterization of nighttime formation of particulate organic nitrates based on high-resolution aerosol mass spectrometry in an urban atmosphere in China. Atmospheric Chemistry and Physics, 19, 5235−5249, https://doi.org/10.5194/acp-19-5235-2019.
Zeng, Y., S. L. Tian, and Y. P. Pan, 2018: Revealing the sources of atmospheric ammonia: A review. Current Pollution Reports, 4, 189−197, https://doi.org/10.1007/s40726-018-0096-6.
Zhang, H., J. D. Surratt, Y. H. Lin, J. Bapat, and R. M. Kamens, 2011: Effect of relative humidity on SOA formation from isoprene/NO photooxidation: Enhancement of 2-methylglyceric acid and its corresponding oligoesters under dry conditions. Atmospheric Chemistry and Physics, 11, 6411−6424, https://doi.org/10.5194/acp-11-6411-2011.
Zhang, H. F., and Coauthors, 2018: Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States. Proceedings of the National Academy of Sciences of the United States of America, 115, 2038−2043, https://doi.org/10.1073/pnas.1717513115.
Zhang, J., and Coauthors, 2017a: Chemical composition, source, and process of urban aerosols during winter haze formation in Northeast China. Environmental Pollution, 231, 357−366, https://doi.org/10.1016/j.envpol.2017.07.102.
Zhang, J. K., Y. S. Wang, X. J. Huang, Z. R. Liu, D. S. Ji, and Y. Sun, 2015a: Characterization of organic aerosols in Beijing using an aerodyne high-resolution aerosol mass spectrometer. Adv. Atmos. Sci., 32, 877−888, https://doi.org/10.1007/s00376-014-4153-9.
Zhang, P., T. Z. Chen, J. Liu, C. G. Liu, J. Z. Ma, Q. X. Ma, B. W. Chu, and H. He, 2019a: Impacts of SO2, relative humidity, and seed acidity on secondary organic aerosol formation in the ozonolysis of butyl vinyl ether. Environ. Sci. Technol., 53, 8845−8853, https://doi.org/10.1021/acs.est.9b02702.
Zhang, R. Y., and Coauthors, 2015b: Formation of urban fine particulate matter. Chemical Reviews, 115, 3803−3855, https://doi.org/10.1021/acs.chemrev.5b00067.
Zhang, S. H., M. Shaw, J. H. Seinfeld, and R. C. Flagan, 1992: Photochemical aerosol formation from α-pinene- and β-pinene J. Geophys. Res. Atmos., 97, 20 717−20 729, https://doi.org/10.1029/92JD02156.
Zhang, Y. J., and Coauthors, 2017c: Limited formation of isoprene epoxydiols-derived secondary organic aerosol under NOx-rich environments in Eastern China. Geophys. Res. Lett., 44, 2035−2043, https://doi.org/10.1002/2016GL072368.
Zhang, Y. L., and Coauthors, 2017b: High contribution of nonfossil sources to submicrometer organic aerosols in Beijing, China. Environ. Sci. Technol., 51, 7842−7852, https://doi.org/10.1021/acs.est.7b01517.
Zhang, Y. Q., and Coauthors, 2019b: Impact of anthropogenic emissions on biogenic secondary organic aerosol: Observation in the Pearl River Delta, southern China. Atmospheric Chemistry and Physics, 19, 14 403−14 415, https://doi.org/10.5194/acp-19-14403-2019.
Zhao, C. F., Y. N. Li, F. Zhang, Y. L. Sun, and P. C. Wang, 2018a: Growth rates of fine aerosol particles at a site near Beijing in June 2013. Adv. Atmos. Sci., 35, 209−217, https://doi.org/10.1007/s00376-017-7069-3.
Zhao, D. F., and Coauthors, 2018b: Effects of NOx and SO2 on the secondary organic aerosol formation from photooxidation of α-pinene and limonene. Atmospheric Chemistry and Physics, 18, 1611−1628, https://doi.org/10.5194/acp-18-1611-2018.
Zhao, Z. X., Q. Xu, X. Y. Yang, and H. F. Zhang, 2019: Heterogeneous ozonolysis of endocyclic unsaturated organic aerosol proxies: Implications for Criegee intermediate dynamics and later-generation reactions. Acs Earth and Space Chemistry, 3, 344−356, https://doi.org/10.1021/acsearthspacechem.8b00177.
Zhu, B., H. L. Wang, L. J. Shen, H. Q. Kang, and X. N. Yu, 2013: Aerosol spectra and new particle formation observed in various seasons in Nanjing. Adv. Atmos. Sci., 30, 1632−1644, https://doi.org/10.1007/s00376-013-2202-4.
Ziemann, P. J., and R. Atkinson, 2012: Kinetics, products, and mechanisms of secondary organic aerosol formation. Chemical Society Reviews, 41, 6582−6605, https://doi.org/10.1039/C2CS35122F.