Bao, Q., and J. Li, 2020: Progress in climate modeling of precipitation over the Tibetan Plateau. National Science Review, 7, 486−487, https://doi.org/10.1093/nsr/nwaa006.
Borchert, L. F., V. Koul, M. B. Menary, D. J. Befort, D. Swingedouw, G. Sgubin, and J. Mignot, 2021: Skillful decadal prediction of unforced southern European summer temperature variations. Environmental Research Letters, 16, 104017. https://doi.org/10.1088/1748-9326/ac20f5.
Chen, W., 2002: Impacts of El Niño and La Niña on the cycle of the East Asian winter and summer monsoon. Chinese Journal of Atmospheric Sciences, 26, 595−610, https://doi.org/10.3878/j.issn.1006-9895.2002.05.02.
Chen, W., H.-F. Graf, and R. H. Huang, 2000: The interannual variability of East Asian winter monsoon and its relation to the summer monsoon. Adv. Atmos. Sci., 17, 48−60, https://doi.org/10.1007/s00376-000-0042-5.
Cheng, L. J., K. E. Trenberth, J. T. Fasullo, M. Mayer, M. Balmaseda, and J. Zhu., 2019: Evolution of ocean heat content related to ENSO. J. Climate, 32, 3529−3556, https://doi.org/10.1175/JCLI-D-18-0607.1.
Dai, H. X., K. Fan, and J. P. Liu, 2019: Month-to-Month variability of winter temperature over Northeast China linked to sea ice over the Davis Strait-Baffin bay and the Barents-Kara sea. J. Climate, 32, 6365−6384, https://doi.org/10.1175/jcli-d-18-0804.1.
Ding, Y. H., 1994: The winter monsoon in East Asia. Monsoons Over China, Y. H. Ding, Ed., Springer, 91−173, https://doi.org/10.1007/978-94-015-8302-2_2.
Doi, T., S. K. Behera, and T. Yamagata, 2020: Wintertime impacts of the 2019 super IOD on East Asia. Geophys. Res. Lett., 47, e2020GL089456, https://doi.org//10.1029/2020g l089456.
Eade, R., D. Smith, A. Scaife, E. Wallace, N. Dunstone, L. Hermanson, and N. Robinson, 2014: Do seasonal-to-decadal climate predictions underestimate the predictability of the real world. Geophys. Res. Lett., 41, 5620−5628, https://doi.org/10.1002/2014GL061146.
Geng, X., W. J. Zhang, M. F. Stuecker, and F.-F. Jin, 2017: Strong sub-seasonal wintertime cooling over East Asia and northern Europe associated with super El Niño events. Scientific Reports, 7, 3770. https://doi.org/10.1038/s41598-017-03977-2.
Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813−829, https://doi.org/10.1175/1520-0493(1981)109<0813:Psapaw>2.0.Co;2.
Hsu, C.-W., and J. J. Yin, 2019: How likely is an El Niño to break the global mean surface temperature record during the 21st century. Environmental Research Letters, 14, 094017. https://doi.org/10.1088/1748-9326/ab3b82.
Hu, S., T. J. Zhou, and B. Wu, 2020: Improved ENSO prediction skill resulting from reduced climate drift in IAP-DecPreS: A comparison of full-field and anomaly initializations. Journal of Advances in Modeling Earth Systems, 12, e2019MS001759. https://doi.org/10.1029/2019ms001759.
Hu, S., T. J. Zhou, B. Wu, and X. L. Chen, 2023: Seasonal prediction of the record-breaking Northward shift of the Western Pacific Subtropical High in July 2021. Adv. Atmos. Sci., 40, 410−427, https://doi.org/10.1007/s00376-022-2151-x.
Jia, X. J., S. Wang, H. Lin, and Q. Bao, 2015: A connection between the tropical Pacific Ocean and the winter climate in the Asian-Pacific region. J. Geophys. Res., 120, 430−448, https://doi.org/10.1002/2014JD022324.
Kim, J.-W., S.-I. An, S.-Y. Jun, H.-J. Park, and S.-W. Yeh, 2017: ENSO and East Asian winter monsoon relationship modulation associated with the anomalous northwest Pacific anticyclone. Climate Dyn., 49, 1157−1179, https://doi.org/10.1007/s00382-016-3371-5.
Li, J. X., and Coauthors, 2021: Dynamical seasonal prediction of tropical cyclone activity using the FGOALS-f2 ensemble prediction system. Wea. Forecasting, 36, 1759−1778, https://doi.org/10.1175/WAF-D-20-0189.1.
Li, K.-X., F. Zheng, D.-Y. Luo, C. Sun, and J. Zhu, 2022: Key regions in the modulation of seasonal GMST variability by analyzing the two hottest years: 2016 vs. 2020. Environmental Research Letters, 17, 094034. https://doi.org/10.1088/1748-9326/AC8DAB.
Li, K. X., F. Zheng, L. J. Cheng, T. Y. Zhang, and J. Zhu, 2023: Record-breaking global temperature and crises with strong El Niño in 2023−2024. The Innovation Geoscience, 1, 100030. https://doi.org/10.59717/j.xinn-geo.2023.100030.
Luo, D. H., X. D. Chen, J. Overland, I. Simmonds, Y. T. Wu, and P. F. Zhang, 2019: Weakened potential vorticity barrier linked to recent winter Arctic sea ice loss and midlatitude cold extremes. J. Climate, 32, 4235−4261, https://doi.org/10.1175/Jcli-D-18-0449.1.
Lüthi, S., and Coauthors, 2023: Rapid increase in the risk of heat-related mortality. Nature Communications, 14, 4894. https://doi.org/10.1038/s41467-023-40599-x.
Ma, J. H., and H. J. Wang, 2014: Design and testing of a global climate prediction system based on a coupled climate model. Science China Earth Sciences, 57, 2417−2427, https://doi.org/10.1007/s11430-014-4875-7.
Morice, C. P., and Coauthors, 2021: An updated assessment of near-surface temperature change from 1850: The HadCRUT5 data set. J. Geophys. Res., 126, e2019JD032361. https://doi.org/10.1029/2019JD032361.
Mu, M. Q., and C. Y. Li, 1999: ENSO signals in the interannual variability of East-Asian winter monsoon. Part I: Observed data analyses. Chinese Journal of Atmospheric Sciences, 23, 276−285, https://doi.org/10.3878/j.issn.1006-9895.1999.03.03.
Rohde, R. A., and Z. Hausfather, 2020: The berkeley earth land/ocean temperature record. Earth System Science Data, 12, 3469−3479, https://doi.org/10.5194/essd-12-3469-2020.
Ruffault, J., and Coauthors, 2020: Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Scientific Reports, 10, 13790. https://doi.org/10.1038/s41598-020-70069-z.
Scaife, A. A., and D. Smith, 2018: A signal-to-noise paradox in climate science. npj Climate and Atmospheric Science, 1, 28. https://doi.org/10.1038/s41612-018-0038-4.
Singh, B. K., M. Delgado-Baquerizo, E. Egidi, E. Guirado, J. E. Leach, H. W. Liu, and P. Trivedi, 2023: Climate change impacts on plant pathogens, food security and paths forward. Nature Reviews Microbiology, 21, 640−656, https://doi.org/10.1038/s41579-023-00900-7.
Su, J. Z., R. H. Zhang, and H. J. Wang, 2017: Consecutive record-breaking high temperatures marked the handover from hiatus to accelerated warming. Scientific Reports, 7, 43735. https://doi.org/10.1038/srep43735.
Tao, S. Y., and Q. Y. Zhang, 1998: Response of the Asian winter and summer monsoon to ENSO events. Scientia Atmospherica Sinica, 22, 399−407, https://doi.org/10.3878/j.issn.1006-9895.1998.04.02.
Vose, R. S., and Coauthors, 2021: Implementing full spatial coverage in NOAA’s global temperature analysis. Geophys. Res. Lett., 48, e2020GL090873. https://doi.org/10.1029/2020GL 090873.
Walther, G.-R., 2010: Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2019−2024, https://doi.org/10.1098/rstb.2010.0021.
Wang, B., R. G. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate. J. Climate, 13, 1517−1536, https://doi.org/10.1175/1520-0442(2000)013<1517:peathd>2.0.co;2.
Wang, L., and M.-M. Lu, 2017: The East Asian winter monsoon. The Global Monsoon System: Research and Forecast. 3rd ed., C.-P. Chang et al., Eds., World Scientific, 51−61, https://doi.org/10.1142/9789813200913_0005.
Wang, L., W. Chen, W. Zhou, and R. H. Huang, 2009: Interannual variations of East Asian Trough axis at 500 hPa and its association with the East Asian Winter Monsoon pathway. J. Climate, 22, 600−614, https://doi.org/10.1175/2008JCLI2295.1.
Wang, L., A. Y. Deng, and R. H. Huang, 2019: Wintertime internal climate variability over Eurasia in the CESM large ensemble. Climate Dyn., 52, 6735−6748, https://doi.org/10.1007/s00382-018-4542-3.
Wu, B., T. J. Zhou, and F. Zheng, 2018: EnOI-IAU initialization scheme designed for decadal climate prediction system IAP-DecPreS. J. Geophys. Res., 10, 342−356, https://doi.org/10.1002/2017ms001132.
Wu, R. G., 2016: Coupled intraseasonal variations in the East Asian winter monsoon and the South China Sea-Western North Pacific SST in boreal winter. Climate Dyn., 47, 2039−2057, https://doi.org/10.1007/s00382-015-2949-7.
Yao, Y., and Coauthors, 2023: Extreme cold events in North America and Eurasia in November-December 2022: A potential vorticity gradient perspective. Adv. Atmos. Sci., 40, 953−962, https://doi.org/10.1007/s00376-023-2384-3.
Yin, J. J., J. Overpeck, C. Peyser, and R. Stouffer, 2018: Big jump of record warm global mean surface temperature in 2014−2016 related to unusually large oceanic heat releases. Geophys. Res. Lett., 45, 1069−1078, https://doi.org/10.1002/2017gl076500.
Yu, S., and J. Q. Sun, 2018: Revisiting the relationship between El Niño-Southern Oscillation and the East Asian winter monsoon. International Journal of Climatology, 38, 4846−4859, https://doi.org/10.1002/joc.5702.
Zhang, R. H., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the ‘86/87 and ‘91/92 events. J. Meteor. Soc. Japan, 74, 49−62, https://doi.org/10.2151/jmsj1965.74.1_49.
Zhang, X. J., F. Zheng, J. Zhu, and X. R. Chen, 2022: Observed frequent occurrences of marine heatwaves in most ocean regions during the last two decades. Adv. Atmos. Sci., 39, 1579−1587, https://doi.org/10.1007/s00376-022-1291-3.
Zheng, F., and Coauthors, 2022a: The predictability of ocean environments that contributed to the 2020/21 extreme cold events in China: 2020/21 La Niña and 2020 Arctic sea ice loss. Adv. Atmos. Sci., 39, 658−672, https://doi.org/10.1007/s00376-021-1130-y.
Zheng, F., and Coauthors, 2022b: The 2020/21 extremely cold winter in China influenced by the synergistic effect of La Niña and warm arctic. Adv. Atmos. Sci., 39, 546−552, https://doi.org/10.1007/s00376-021-1033-y.
Zheng, F., H. L. Ren, R. P. Lin, and J. Zhu, 2023a: Realistic ocean initial condition for stimulating the successful prediction of extreme cold events in the 2020/2021 winter. Climate Dyn., 61, 33−46, https://doi.org/10.1007/s00382-022-06557-x.
Zheng, F., and Coauthors, 2023b: Can Eurasia experience a cold winter under a third-year La Niña in 2022/23. Adv. Atmos. Sci., 40, 541−548, https://doi.org/10.1007/s00376-022-2331-8.