Birkinshaw, S. J., and Coauthors, 2017: Climate change impacts on Yangtze River discharge at the Three Gorges Dam. Hydrology and Earth System Sciences, 21, 1911−1927, https://doi.org/10.5194/hess-21-1911-2017.
Chen, R. D., Z. P. Wen, and R. Y. Lu, 2018: Interdecadal change on the relationship between the mid-summer temperature in South China and atmospheric circulation and sea surface temperature. Climate Dyn., 51, 2113−2126, https://doi.org/10.1007/S00382-017-4002-5.
Chen, R. D., Z. P. Wen, R. Y. Lu, and C. Z, Wang, 2019: Causes of the extreme hot midsummer in Central and South China during 2017: Role of the western tropical Pacific warming. Adv. Atmos. Sci., 36, 465−478, https://doi.org/10.1007/s00376-018-8177-4.
Chen, Z. S., Z. P. Wen, R. G. Wu, X. B. Lin, and J. B. Wang, 2016: Relative importance of tropical SST anomalies in maintaining the Western North Pacific anomalous anticyclone during El Niño to La Niña transition years. Climate Dyn., 46, 1027−1041, https://doi.org/10.1007/s00382-015-2630-1.
Chowdary, J. S., S.-P. Xie, J.-J. Luo, J. Hafner, S. Behera, Y. Masumoto, and T. Yamagata, 2011: Predictability of Northwest Pacific climate during summer and the role of the tropical Indian Ocean. Climate Dyn., 36, 607−621, https://doi.org/10.1007/s00382-009-0686-5.
Chung, P.-H., C.-H. Sui, and T. M. Li, 2011: Interannual relationships between the tropical sea surface temperature and summertime subtropical anticyclone over the western North Pacific. J. Geophys. Res., 116, D13111, https://doi.org/10.1029/2010JD015554.
Ding, Y. H., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117−142, https://doi.org/10.1007/s00703-005-0125-z.
Fan, K., H. J. Wang, and Y.-J. Choi, 2008: A physically-based statistical forecast model for the middle-lower reaches of the Yangtze River Valley summer rainfall. Chinese Science Bulletin, 53, 602−609, https://doi.org/10.1007/s11434-008-0083-1.
He, J. Y., J. Y. Wu, and J.-J. Luo, 2020: Introduction to climate forecast system version 1.0 of Nanjing University of Information Science and Technology. Transactions of Atmospheric Sciences, 43(1), 128−143, https://doi.org/10.13878/j.cnki.dqkxxb.20191110007. (in Chinese with English abstract
Huang, B. H., and J. L. Kinter, 2002: Interannual variability in the tropical Indian Ocean. J. Geophys. Res., 107, 3199, https://doi.org/10.1029/2001JC001278.
Huang, R. H., Y. H. Xu, P. F. Wang, and L. T. Zhou, 1998: The features of the catastrophic flood over the Changjiang River Basin during the summer of 1998 and cause exploration. Climatic and Environmental Research, 3, 300−313, https://doi.org/10.3878/j.issn.1006-9585.1998.04.02. (in Chinese with English abstract
Jiang, T., Z. W. Kundzewicz, and B. D. Su, 2008: Changes in monthly precipitation and flood hazard in the Yangtze River Basin, China. International Journal of Climatology, 28, 1471−1481, https://doi.org/10.1002/joc.1635.
Jin, D. C., and L. W. Huo, 2018: Influence of tropical Atlantic sea surface temperature anomalies on the East Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 144, 1490−1500, https://doi.org/10.1002/qj.3296.
Johnson, N. C., M. L. L'Heureux, C. H. Chang, and Z. Z. Hu, 2019: On the delayed coupling between ocean and atmosphere in recent weak El Niño episodes. Geophys. Res. Lett., 46, 11416−11425, https://doi.org/10.1029/2019GL084021.
Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437−472, https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2.
Kim, W., S.-W. Yeh, J.-H. Kim, J.-S. Kug, and M. Kwon, 2011: The unique 2009−2010 El Niño event: A fast phase transition of warm pool El Niño to La Niña. Geophys. Res. Lett., 38, L15809, https://doi.org/10.1029/2011GL048521.
Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote Sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917−932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.
Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan. Ser. II, 93, 5−48, https://doi.org/10.2151/jmsj.2015-001.
Kug, J.-S., T. Li, S.-I An, I.-S. Kang, J.-J. Luo, S. Masson, and T. Yamagata, 2006: Role of the ENSO-Indian Ocean coupling on ENSO variability in a coupled GCM. Geophys. Res. Lett., 33, L09710, https://doi.org/10.1029/2005GL024916.
Li, C. F., W. Chen, X. W. Hong, and R. Y. Lu, 2017: Why was the strengthening of rainfall in summer over the Yangtze River valley in 2016 less pronounced than that in 1998 under similar preceding El Niño events?—Role of midlatitude circulation in August Adv. Atmos. Sci., 34, 1290−1300, https://doi.org/10.1007/s00376-017-7003-8.
Li, C., J.-J. Luo, S.-L. Li, H. Hendon, O. Alves, and C. MacLachlan, 2018: Multi-model prediction skill of the Somali and Maritime Continent cross-equatorial flows. J. Climate, 31, 2445−2464, https://doi.org/10.1175/JCLI-D-17-0272.1.
Li, C. F., and Coauthors, 2016a: Skillful seasonal prediction of Yangtze River valley summer rainfall. Environmental Research Letters, 11, 094002, https://doi.org/10.1088/1748-9326/11/9/094002.
Li, L., C. W. Zhu, R. H. Zhang, and B. Q. Liu, 2021: Roles of the Tibetan Plateau vortices in the record Meiyu rainfall in 2020. Atmospheric Science Letters, 22, e1017, https://doi.org/10.1002/asl.1017.
Li, X. Y., and R. Y. Lu, 2017: Extratropical factors affecting the variability in summer precipitation over the Yangtze River Basin, China. J. Climate, 30, 8357−8374, https://doi.org/10.1175/JCLI-D-16-0282.1.
Li, X. C., S.-P. Xie, S. T. Gille, and C. Yoo, 2016b: Atlantic-induced pan-tropical climate change over the past three decades. Nature Climate Change, 6, 275−279, https://doi.org/10.1038/NCLIMATE2840.
Liu, B. Q., Y. H. Yan, C. W. Zhu, S. M. Ma, and J. Y. Li, 2020: Record-breaking Meiyu rainfall around the Yangtze River in 2020 regulated by the subseasonal phase transition of the North Atlantic Oscillation. Geophys. Res. Lett., 47, e2020GL090342, https://doi.org/10.1029/2020GL090342.
Lu, B., and H. L. Ren, 2020: What caused the extreme Indian Ocean dipole event in 2019? Geophys. Res. Lett., 47, e2020GL087768, https://doi.org/10.1029/2020GL087768.
Luo, J.-J., W. Sasaki, and Y. Masumoto, 2012: Indian Ocean warming modulates Pacific climate change. Proceedings of the National Academy of Sciences of the United States of America, 109, 18 701−18 706, https://doi.org/10.1073/pnas.1210239109.
Luo, J.-J., S. Masson, S. Behera, and T. Yamagata, 2007: Experimental forecasts of Indian Ocean dipole using a coupled OAGCM. J. Climate, 20, 2178−2190, https://doi.org/10.1175/JCLI4132.1.
Luo, J.-J., S. Masson, S. K. Behera, and T. Yamagata, 2008: Extended ENSO predictions using a fully coupled ocean-atmosphere model. J. Climate, 21, 84−93, https://doi.org/10.1175/2007JCLI1412.1.
Luo, J.-J., S. Masson, S. Behera, S. Shingu, and T. Yamagata, 2005a: Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J. Climate, 18, 4474−4497, https://doi.org/10.1175/JCLI3526.1.
Luo, J.-J., S. Masson, E. Roeckner, G. Madec, and T. Yamagata, 2005b: Reducing climatology bias in an ocean-atmosphere CGCM with improved coupling physics. J. Climate, 18, 2344−2360, https://doi.org/10.1175/JCLI3404.1.
Luo, J.-J., G. Q. Liu, H. Hendon, O. Alves, and T. Yamagata, 2017: Inter-basin sources for two-year predictability of the multi-year La Niña event in 2010−2012. Scientific Reports, 7, 2276, https://doi.org/10.1038/s41598-017-01479-9.
Luo, J.-J., S. Masson, S. Behera, P. Delecluse, S. Gualdi, A. Navarra, and T. Yamagata, 2003: South Pacific origin of the decadal ENSO-like variation as simulated by a coupled GCM. Geophys. Res. Lett., 30, 2250, https://doi.org/10.1029/2003GL018649.
Luo, J.-J., R. C. Zhang, S. K. Behera, Y. Masumoto, F.-F. Jin, R. Lukas, and T. Yamagata, 2010: Interaction between El Niño and extreme Indian Ocean dipole. J. Climate, 23, 726−742, https://doi.org/10.1175/2009JCLI3104.1.
Luo, J.-J., C. X. Yuan, W. Sasaki, S. K. Behera, Y. Masumoto, T. Yamagata, J.-Y. Lee, and S. Masson, 2016: Current status of intraseasonal-seasonal-to-interannual prediction of the Indo-Pacific climate. World Scientific Series on Asia-Pacific Weather and Climate: Volume 7: Indo-Pacific Climate Variability and Predictability, S. K. Behera and T. Yamagata, Eds., The World Scientific Publisher, 63−107, https: //doi.org/10.1142/9789814696623_0003.
Ma, J., W. B. He, Z. H. Chen, Y. H. Fu, and J. Y. Yin, 2020: The impact of north tropical Atlantic sea surface temperature anomalies in the ensuing spring of El Niño on the tropical Indian Ocean and northwest Pacific. International Journal of Climatology, 40, 4978−4991, https://doi.org/10.1002/joc.6500.
Martin, G. M., N. J. Dunstone, A. A. Scaife, and P. E. Bett, 2020: Predicting June mean rainfall in the Middle/Lower Yangtze River Basin. Adv. Atmos. Sci., 37, 29−41, https://doi.org/10.1007/s00376-019-9051-8.
Masson, S., and Coauthors, 2005: Impact of barrier layer on winter-spring variability of the southeastern Arabian Sea. Geophys. Res. Lett., 32, L07703, https://doi.org/10.1029/2004GL021980.
Ren, H.-C., W. J. Li, H.-L. Ren, and J. Q. Zuo, 2016: Distinct linkage between winter Tibetan Plateau snow depth and early summer Philippine Sea anomalous anticyclone. Atmospheric Science Letters, 17, 223−229, https://doi.org/10.1002/asl.646.
Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Q. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609−1625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.
Roxy, M. K., K. Ritika, P. Terray, and S. Masson, 2014: The curious case of Indian Ocean warming. J. Climate, 27, 8501−8509, https://doi.org/10.1175/JCLI-D-14-00471.1.
Slingo, J., and T. Palmer, 2011: Uncertainty in weather and climate prediction. Philos. Trans. Roy. Soc. London, 369, 4751−4767, https://doi.org/10.1098/RSTA.2011.0161.
Takaya, Y., I. Ishikawa, C. Kobayashi, H. Endo, and T. Ose, 2020: Enhanced Meiyu-Baiu rainfall in early summer 2020: Aftermath of the 2019 super IOD event. Geophys. Res. Lett., 47, e2020GL090671, https://doi.org/10.1029/2020GL090671.
Tokinaga, H., and Y. Tanimoto, 2004: Seasonal transition of SST anomalies in the tropical Indian Ocean during El Niño and Indian Ocean dipole years. J. Meteor. Soc. Japan Ser. II, 82, 1007−1018, https://doi.org/10.2151/jmsj.2004.1007.
Valcke, S., L. Terray, and A. Piacentini, 2000: The OASIS coupler user guide version 2.4. CERFACE Tech. Rep. TR/CGMC/00-10, 85pp.
Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 1517−1536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.
Wang, B., B. Q. Xiang, and J. Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proceedings of the National Academy of Sciences of the United States of America, 110, 2718−2722, https://doi.org/10.1073/pnas.1214626110.
Wang, B., Z. W. Wu, J. P. Li, J. Liu, C.-P. Chang, Y. H. Ding, and G. X. Wu, 2008: How to measure the strength of the East Asian summer monsoon. Journal of Climate, 21, 4449−4463, https://doi.org/10.1175/2008JCLI2183.1.
Wang, H., and Coauthors, 2015: A review of seasonal climate prediction research in China. Adv. Atmos. Sci., 32, 149−168, https://doi.org/10.1007/s00376-014-0016-7.
Wu, B., T. J. Zhou, and T. M. Li, 2009: Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate, 22, 2992−3005, https://doi.org/10.1175/2008JCLI2710.1.
Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17 year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539−2558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.
Xie, S. P., H. Annamalai, F. A. Schott, and J. P. McCreary Jr., 2002: Structure and mechanisms of South Indian Ocean climate variability. J. Climate, 15, 864−878, https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.
Xie, S.-P., Y. Kosaka, Y. Du, K. M. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411−432, https://doi.org/10.1007/s00376-015-5192-6.
Xie, S.-P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J. Climate, 22, 730−747, https://doi.org/10.1175/2008JCLI2544.1.
Yang, J. L., Q. Y. Liu, S.-P. Xie, Z. Y. Liu, and L. X. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, https://doi.org/10.1029/2006GL028571.
Yuan, C. X., and M. Z. Yang, 2020: Interannual variations in summer precipitation in southwest China: Anomalies in moisture transport and the role of the tropical Atlantic. J. Climate, 33, 5993−6007, https://doi.org/10.1175/JCLI-D-19-0809.1.
Yuan, Y., H. Gao, W. J. Li, Y. J. Liu, L. J. Chen, B. Zhou, and Y. H. Ding, 2017: The 2016 summer floods in China and associated physical mechanisms: A comparison with 1998. J. Meteor. Res., 31, 261−277, https://doi.org/10.1007/s13351-017-6192-5.
Zhang, L., W. Q. Han, K. B. Karnauskas, G. A. Meehl, A. X. Hu, N. Rosenbloom, and T. Shinoda, 2019: Indian Ocean warming trend reduces Pacific warming response to anthropogenic greenhouse gases: An interbasin thermostat mechanism. Geophys. Res. Lett., 46, 10 882−10 890, https://doi.org/10.1029/2019GL084088.
Zhao, Y. F., J. Zhu, and Y. Xu, 2014: Establishment and assessment of the grid precipitation datasets in China for recent 50 years. Journal of the Meteorological Sciences, 34, 414−420, https://doi.org/10.3969/2013jms.0008. (in Chinese with English abstract
Zhou, T. J., and R. C. Yu, 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res.: Atmos., 110, D08104, https://doi.org/10.1029/2004JD005413.
Zhou, Z.-Q., S.-P. Xie, and R. H. Zhang, 2021: Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proceedings of the National Academy of Sciences of the United States of America, 118, e2022255118, https://doi.org/10.1073/PNAS.2022255118.