Bao, X. H., F. Q. Zhang, and J. H. Sun, 2011: Diurnal variations of warm-season precipitation east of the Tibetan Plateau over China. Mon. Wea. Rev., 139, 2790−2810, https://doi.org/10.1175/MWR-D-11-00006.1.
Boos, W. R., and Z. M. Kuang, 2013: Sensitivity of the South Asian monsoon to elevated and non-elevated heating. Scientific Reports, 3, 1192, https://doi.org/10.1038/srep01192.
Cen, S. X., Y. F. Gong, X. Lai, and L. Peng, 2015: The relationship between the atmospheric heating source/sink anomalies of Asian monsoon and flood/drought in the Yangtze River basin in the Meiyu period. Journal of Tropical Meteorology, 21, 352−360, https://doi.org/10.16555/j.1006-8775.2015.04.004.
Chang, C.-P., Y. S. Zhang, and T. Li, 2000a: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 4310−4325, https://doi.org/10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2.
Chang, C.-P., Y. S. Zhang, and T. Li, 2000b: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part II: Meridional structure of the monsoon. J. Climate, 13, 4326−4340, https://doi.org/10.1175/1520-0442(2000)013<4326:IAIVOT>2.0.CO;2.
Chen, G. X., W. M. Sha, T. Iwasaki, and Z. P. Wen, 2017: Diurnal cycle of a heavy rainfall corridor over East Asia. Mon. Wea. Rev., 145, 3365−3389, https://doi.org/10.1175/MWR-D-16-0423.1.
Chen, H. M., R. C. Yu, J. Li, W. H. Yuan, and T. J. Zhou, 2010: Why nocturnal long-duration rainfall presents an eastward-delayed diurnal phase of rainfall down the Yangtze River valley. J. Climate, 23, 905−917, https://doi.org/10.1175/2009JCLI3187.1.
Chen, Y., and P. M. Zhai, 2015: Synoptic-scale precursors of the East Asia/Pacific teleconnection pattern responsible for persistent extreme precipitation in the Yangtze River Valley. Quart. J. Roy. Meteor. Soc., 141, 1389−1403, https://doi.org/10.1002/qj.2448.
Crosbie, E., and Y. Serra, 2014: Intraseasonal modulation of synoptic-scale disturbances and tropical cyclone genesis in the Eastern North Pacific. J. Climate, 27, 5724−5745, https://doi.org/10.1175/JCLI-D-13-00399.1.
Cui, C. G., X. Q. Dong, B. Wang, and H. Yang, 2021: Phase two of the integrative monsoon frontal rainfall experiment (IMFRE-II) over the middle and lower reaches of the Yangtze River in 2020. Adv. Atmos. Sci., 38, 346−356, https://doi.org/10.1007/s00376-020-0262-9.
Ding, Y. H., 1992: Summer monsoon rainfalls in China. J. Meteor. Soc. Japan, 70, 373−396, https://doi.org/10.2151/jmsj1965.70.1B_373.
Ding, Y. H., 1994: Monsoons over China. Springer, 419 pp.
Ding, Y. H., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117−142, https://doi.org/10.1007/s00703-005-0125-z.
Ding, Y. H., and Z. Y. Wang, 2008: A study of rainy seasons in China. Meteorol. Atmos. Phys., 100, 121−138, https://doi.org/10.1007/s00703-008-0299-2.
Ding, Y. H., Z. Y. Wang, and Y. Sun, 2008: Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. International Journal of Climatology, 28, 1139−1161, https://doi.org/10.1002/joc.1615.
Ding, Y. H., P. Liang, Y. J. Liu, and Y. C. Zhang, 2020: Multiscale variability of meiyu and its prediction: A new review. J. Geophys. Res., 125, e2019JD031496, https://doi.org/10.1029/2019JD031496.
Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteorol. Climatol., 18, 1016−1022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.
He, J. H., C. H. Sun, Y. Y. Liu, J. Matsumoto, and W. J. Li, 2007a: Seasonal transition features of large-scale moisture transport in the Asian-Australian monsoon region. Adv. Atmos. Sci., 24, 1−14, https://doi.org/10.1007/s00376-007-0001-5.
He, J. H., J. H. Ju, Z. P. Wen, J. M. Lü, and Q. H. Jin, 2007b: A review of recent advances in research on Asian monsoon in China. Adv. Atmos. Sci., 24, 972−992, https://doi.org/10.1007/s00376-007-0972-2.
Hersbach, H., and Coauthors, 2019: Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsletter, 159, 17−24, https://doi.org/10.21957/vf291hehd7.
Hong, X. W., R. Y. Lu, and S. L. Li, 2018: Asymmetric relationship between the meridional displacement of the Asian westerly jet and the silk road pattern. Adv. Atmos. Sci., 35, 389−396, https://doi.org/10.1007/s00376-017-6320-2.
Hsu, P. C., T. Li, and C.-H. Tsou, 2011: Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific. Part I: Energetics diagnosis. J. Climate, 24, 927−941, https://doi.org/10.1175/2010JCLI3833.1.
Lee, C. Y., S. J. Camargo, F. Vitart, A. H. Sobel, and M. K. Tippett, 2018: Subseasonal tropical cyclone genesis prediction and MJO in the S2S dataset. Wea. Forecasting, 33, 967−988, https://doi.org/10.1175/WAF-D-17-0165.1.
Li, C. H., T. Li, D. J. Gu, A. L. Lin, and B. Zheng, 2015: Relationship between summer rainfall anomalies and sub-seasonal oscillation intensity in the ChangJiang Valley in China. Dyn. Atmos. Oceans, 70, 12−29, https://doi.org/10.1016/j.dynatmoce.2015.02.001.
Li, R. C. Y., and W. Zhou, 2013: Modulation of western North Pacific tropical cyclone activity by the ISO. Part I: Genesis and intensity. J. Climate, 26, 2904−2918, https://doi.org/10.1175/JCLI-D-12-00210.1.
Li, T., 2010: Monsoon climate variabilities. Climate Dynamics: Why Does Climate Vary? D.-Z. Sun and F. Bryan, Eds., American Geophysical Union, https://doi.org/10.1029/2008GM000782.
Li, T., and B. Wang, 2005: A review on the western North Pacific monsoon: Synoptic-to-interannual variabilities. Terrestrial, 16, 285−314, https://doi.org/10.3319/TAO.2005.16.2.285(A).
Lu, R. Y., J. H. Oh, B. J. Kim, H. J. Beak, and R. H. Huang, 2001: Associations with the interannual variations of onset and withdrawal of the Changma. Adv. Atmos. Sci., 18, 1066−1080, https://doi.org/10.1007/s00376-001-0023-3.
Luo, Y. L., H. Wang, R. H. Zhang, W. M. Qian, and Z. Z. Luo, 2013: Comparison of rainfall characteristics and convective properties of monsoon precipitation systems over South China and the Yangtze and Huai River basin. J. Climate, 26, 110−132, https://doi.org/10.1175/JCLI-D-12-00100.1.
Pan, X., T. Li, Y. Sun, and Z. W. Zhu, 2021: Cause of extreme heavy and persistent rainfall over Yangtze River in summer 2020. Adv. Atmos. Sci., inpress, https://doi.org/10.1007/s00376-021-0433-3.
Qi, Y. J., R. H. Zhang, and T. Li, 2016: Structure and evolution characteristics of atmospheric intraseasonal oscillation and its impact on the summer rainfall over the Yangtze River basin in 1998. Chinese Journal of Atmospheric Sciences, 40, 451−462, https://doi.org/10.3878/j.issn.1006-9895.1507.15107. (in Chinese with English abstract
Sampe, T. and S.-P. Xie, 2010: Large-scale dynamics of the meiyu-baiu rainband: Environmental forcing by the westerly jet. J. Climate, 23, 113−134, https://doi.org/10.1175/2009JCLI3128.1.
Shang, W., S. S. Li, X. J. Ren, and K. Q. Duan, 2020: Event-based extreme precipitation in central-eastern China: Large-scale anomalies and teleconnections. Climate Dyn., 54, 2347−2360, https://doi.org/10.1007/s00382-019-05116-1.
Si, D., Y. H. Ding, and Y. J. Liu, 2009: Decadal northward shift of the Meiyu belt and the possible cause. Chinese Science Bulletin, 54, 4742−4748, https://doi.org/10.1007/s11434-009-0385-y.
Tao, S., and L. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60−92.
Wang, B., and H. Lin, 2002: Rainy season of the Asian-Pacific summer monsoon. J. Climate, 15, 386−398, https://doi.org/10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2.
Wang, B., R. G. Wu, and T. Li, 2003: Atmosphere-warm ocean interaction and its impacts on Asian-Australian monsoon variation. J. Climate, 16, 1195−1211, https://doi.org/10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.
Wang, H. J., and H. P. Chen, 2012: Climate control for southeastern China moisture and precipitation: Indian or East Asian monsoon. J. Geophys. Res., 117, D12109, https://doi.org/10.1029/2012JD017734.
Wang, J. Y., 2020: Relationships between jianghuai meiyu anomaly and the collaborative evolution of wave trains in the upper and lower troposphere in Mid-July of 2020. Frontiers in Earth Science, 8, 597930, https://doi.org/10.3389/feart.2020.597930.
Webster, P. J., 1983: Mechanisms of monsoon low-frequency variability: Surface hydrological effects. J. Atmos. Sci., 40, 2110−2124, https://doi.org/10.1175/1520-0469(1983)040<2110:MOMLFV>2.0.CO;2.
Wu, G. X., and Coauthors, 2007: The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. Journal of Hydrometeorology, 8, 770−789, https://doi.org/10.1175/JHM609.1.
Wu, R. G., 2017: Relationship between Indian and East Asian summer rainfall variations. Adv. Atmos. Sci., 34, 4−15, https://doi.org/10.1007/s00376-016-6216-6.
Xu, W. X., and E. J. Zipser, 2011: Diurnal variations of precipitation, deep convection, and lightning over and east of the eastern Tibetan Plateau. J. Climate, 24, 448−465, https://doi.org/10.1175/2010JCLI3719.1.
Xuan, S. L., Q. Y. Zhang, and S. Q. Sun, 2011: Anomalous midsummer rainfall in Yangtze River-Huaihe River valleys and its association with the East Asia westerly jet. Adv. Atmos. Sci., 28, 387−397, https://doi.org/10.1007/s00376-010-0111-3.
Yang, J., K. Zhao, X. C. Chen, A. N. Huang, Y. Y. Zheng, and K. Y. Sun, 2020: Subseasonal and diurnal variability in lightning and storm activity over the Yangtze River Delta, China, during Mei-yu season. J. Climate, 33, 5013−5033, https://doi.org/10.1175/JCLI-D-19-0453.1.
Yang, S., K. M. Lau, S. H. Yoo, J. L. Kinter, K. Miyakoda, and C.-H. Ho, 2004: Upstream subtropical signals preceding the Asian summer monsoon circulation. J. Climate, 17, 4213−4229, https://doi.org/10.1175/JCLI3192.1.
Zhai, P. M., X. B. Zhang, H. Wan, and X. H. Pan, 2005: Trends in total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18, 1096−1108, https://doi.org/10.1175/JCLI-3318.1.
Zhao, C., and T. Li, 2019: Basin dependence of the MJO modulating tropical cyclone genesis. Climate Dyn., 52, 6081−6096, https://doi.org/10.1007/s00382-018-4502-y.
Zhang, R. N., R. H. Zhang, and Z. Y. Zuo, 2017: Impact of Eurasian spring snow decrement on East Asian summer precipitation. J. Climate, 30, 3421−3437, https://doi.org/10.1175/JCLI-D-16-0214.1.
Zhou, C. H., and T. Li, 2010: Upscale feedback of tropical synoptic variability to intraseasonal oscillations through the nonlinear rectification of the surface latent heat flux. J. Climate, 23, 5738−5754, https://doi.org/10.1175/2010JCLI3468.1.
Zhou, T. J., D. Y. Gong, J. Li, and B. Li, 2009: Detecting and understanding the multi-decadal variability of the East Asian summer monsoon recent progress and state of affairs. Meteor. Z., 18, 455−467, https://doi.org/10.1127/0941-2948/2009/0396.
Zhu, Y., T. Li, M. Zhao, and T. Nasuno, 2019: Interaction between the MJO and high-frequency waves over the maritime continent in boreal winter. J. Climate, 32, 3819−3835, https://doi.org/10.1175/JCLI-D-18-0511.1.
Zhu, Y. L., H. J. Wang, W. Zhou, and J. H. Ma, 2011: Recent changes in the summer precipitation pattern in East China and the background circulation. Climate Dyn., 36, 1463−1473, https://doi.org/10.1007/s00382-010-0852-9.
Zhu, Y. L., H. J. Wang, J. H. Ma, T. Wang, and J. Q. Sun, 2015: Contribution of the phase transition of pacific decadal oscillation to the late 1990s’ shift in East China summer rainfall. J. Geophys. Res., 120, 8817−8827, https://doi.org/10.1002/2015JD023545.