Bennartz, R., and Coauthors, 2013: July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature, 496(7443), 83−86, https://doi.org/10.1038/nature12002.
Bozkurt, D., R. Rondanelli, J. C. Marín, and R. Garreaud, 2018: Foehn event triggered by an atmospheric river underlies record-setting temperature along continental Antarctica. J. Geophys. Res.: Atmos., 123(8), 3871−3892, https://doi.org/10.1002/2017JD027796.
Bromwich, D. H., J. P. Nicolas, A. J. Monaghan, M. A. Lazzara, L. M. Keller, G. A. Weidner, and A. B. Wilson, 2013: Central West Antarctica among the most rapidly warming regions on Earth. Nature Geoscience, 6(2), 139−145, https://doi.org/10.1038/ngeo1671.
Bronselaer, B., M. Winton, S. M. Griffies, W. J. Hurlin, K. B. Rodgers, O. V. Sergienko, R. J. Stouffer, and J. L. Russell, 2018: Change in future climate due to Antarctic meltwater. Nature, 564, 53−58, https://doi.org/10.1038/s41586-018-0712-z.
Cai, M., and J. H. Lu, 2009: A new framework for isolating individual feedback processes in coupled general circulation climate models. Part II: Method demonstrations and comparisons. Climate Dyn., 32(6), 887−900, https://doi.org/10.1007/s00382-008-0424-4.
Choi, Y.-S., J. Hwang, J. Ok, D.-S. R. Park, H. Su, J. H. Jiang, L. Huang, and T. Limpasuvan, 2020: Effect of Arctic clouds on the ice-albedo feedback in midsummer. International Journal of Climatology, 40(10), 4707−4714, https://doi.org/10.1002/joc.6469.
Clem, K. R., B. R. Lintner, A. J. Broccoli, and J. R. Miller, 2019: Role of the South Pacific Convergence Zone in West Antarctic decadal climate variability. Geophys. Res. Lett., 46, 6900−6909, https://doi.org/10.1029/2019GL082108.
Datta, R. T., M. Tedesco, X. Fettweis, C. Agosta, S. Lhermitte, J. T. M. Lenaerts, and N. Wever, 2019: The effect of Foehn-induced surface melt on firn evolution over the Northeast Antarctic Peninsula. Geophys. Res. Lett., 46(7), 3822−3831, https://doi.org/10.1029/2018GL080845.
Dietz, S., and F. Koninx, 2022: Economic impacts of melting of the Antarctic Ice Sheet. Nature Communications, 13, 5819, https://doi.org/10.1038/s41467-022-33406-6.
Elvidge, A. D., and I. A. Renfrew, 2016: The causes of Foehn warming in the Lee of mountains. Bull. Amer. Meteor. Soc., 97(3), 455−466, https://doi.org/10.1175/BAMS-D-14-00194.1.
Elvidge, A. D., P. K. Munneke, J. C. King, I. A. Renfrew, and E. Gilbert, 2020: Atmospheric drivers of melt on Larsen C Ice Shelf: Surface energy budge regimes and the impact of Foehn. J. Geophys. Res.: Atmos., 125(17), e2020JD032463, https://doi.org/10.1029/2020JD032463.
Feron, S., R. R. Cordero, A. Damiani, A. Malhotra, G. Seckmeyer, and P. Llanillo, 2021: Warming events projected to become more frequent and last longer across Antarctica. Scientific Reports, 11(1), 19564, https://doi.org/10.1038/S41598-021-98619-Z.
Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49(22), 2139−2156, https://doi.org/10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2.
Ghiz, M. L., R. C. Scott, A. M. Vogelmann, J. T. M. Lenaerts, M. Lazzara, and D. Lubin, 2021: Energetics of surface melt in West Antarctica. The Cryosphere, 15(7), 3459−3494, https://doi.org/10.5194/TC-15-3459-2021.
Golledge, N. R., E. D. Keller, N. Gomez, K. A. Naughten, J. Bernales, L. D. Trusel, and T. L. Edwards, 2019: Global environmental consequences of twenty-first-century ice-sheet melt. Nature, 566, 65−72, https://doi.org/10.1038/s41586-019-0889-9.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146(730), 1999−2049, https://doi.org/10.1002/qj.3803.
Hu, X. M., S. A. Sejas, M. Cai, Z. N. Li, and S. Yang, 2019: Atmospheric dynamics footprint on the January 2016 ice sheet melting in West Antarctica. Geophys. Res. Lett., 46(5), 2829−2835, https://doi.org/10.1029/2018GL081374.
Kingslake, J., J. C. Ely, I. Das, and R. E. Bell, 2017: Widespread movement of meltwater onto and across Antarctic ice shelves. Nature, 544(7650), 349−352, https://doi.org/10.1038/nature22049.
Lenaerts, J., and Coauthors, 2017: Meltwater produced by wind–albedo interaction stored in an East Antarctic ice shelf. Nature Climate Change, 7, 58−62, https://doi.org/10.1038/nclimate3180.
Li, X. C., and Coauthors, 2021: Tropical teleconnection impacts on Antarctic climate changes. Nature Reviews Earth & Environment, 2, 680−698, https://doi.org/10.1038/S43017-021-00204-5.
Lu, J. H., and M. Cai, 2009: A new framework for isolating individual feedback processes in coupled general circulation climate models. Part I: Formulation. Climate Dyn., 32(6), 873−885, https://doi.org/10.1007/s00382-008-0425-3.
Nicolas, J. P., and Coauthors, 2017: January 2016 extensive summer melt in West Antarctica favoured by strong El Niño. Nature Communications, 8(1), 5799, https://doi.org/10.1038/ncomms15799.
Paolo, F. S., H. A. Fricker, and L. Padman, 2015: Volume loss from Antarctic ice shelves is accelerating. Science, 348(6232), 327−331, https://doi.org/10.1126/science.aaa0940.
Picard, G., and M. Fily, 2006: Surface melting observations in Antarctica by microwave radiometers: Correcting 26-year time series from changes in acquisition hours. Remote Sensing of Environment, 104(3), 325−336, https://doi.org/10.1016/j.rse.2006.05.010.
Picard, G., M. Fily, and H. Gallee, 2007: Surface melting derived from microwave radiometers: A climatic indicator in Antarctica. Annals of Glaciology, 46, 29−34, https://doi.org/10.3189/172756407782871684.
Rignot, E., J. Mouginot, B. Scheuchl, M. van den Broeke, M. J. van Wessem, and M. Morlighem, 2019: Four decades of Antarctic Ice Sheet mass balance from 1979−2017. Proceedings of the National Academy of Sciences of the United States of America, 116(4), 1095−1103, https://doi.org/10.1073/pnas.1812883116.
Schloesser, F., T. Friedrich, A. Timmermann, R. M. DeConto, and D. Pollard, 2019: Antarctic iceberg impacts on future Southern Hemisphere climate. Nature Climate Change, 9, 672−677, https://doi.org/10.1038/s41558-019-0546-1.
Scott, R. C., J. P. Nicolas, D. H. Bromwich, J. R. Norris, and D. Lubin, 2019: Meteorological drivers and large-scale climate forcing of West Antarctic surface melt. J. Climate, 32(3), 665−684, https://doi.org/10.1175/JCLI-D-18-0233.1.
Scott, R. C., D. Lubin, A. M. Vogelmann, and S. Kato, 2017: West Antarctic Ice Sheet cloud cover and surface radiation budget from NASA A-Train Satellites. J. Climate, 30(16), 6151−6170, https://doi.org/10.1175/JCLI-D-16-0644.1.
Shepherd, A., and Coauthors, 2012: A reconciled estimate of ice-sheet mass balance. Science, 338(6111), 1183−1189, https://doi.org/10.1126/science.1228102.
Steig, E. J., D. P. Schneider, S. D. Rutherford, M. E. Mann, J. C. Comiso, and D. T. Shindell, 2009: Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457(7228), 459−462, https://doi.org/10.1038/nature07669.
Steig, E. J., and Coauthors, 2013: Recent climate and ice-sheet changes in West Antarctica compared with the past 2, 000 years. Nature Geoscience, 6(5), 372−375, https://doi.org/10.1038/ngeo1778.
The IMBIE Team., 2018: Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 558(7709), 219−222, https://doi.org/10.1038/s41586-018-0179-y.
Thomas, E. R., T. J. Bracegirdle, J. Turner, and E. W. Wolff, 2013: A 308 year record of climate variability in West Antarctica. Geophys. Res. Lett., 40(20), 5492−5496, https://doi.org/10.1002/2013GL057782.
Torinesi, O., M. Fily, and C. Genthon, 2003: Variability and trends of the summer melt period of Antarctic ice margins since 1980 from microwave sensors. J. Climate, 16, 1047−1060, https://doi.org/10.1175/1520-0442(2003)016<1047:VATOTS>2.0.CO;2.
Turner, J., and Coauthors, 2022: Record low Antarctic sea ice cover in February 2022. Geophys. Res. Lett., 49(12), e2022GL098904, https://doi.org/10.1029/2022GL098904.
Uotila, P., T. Vihma, and M. Tsukernik, 2013: Close interactions between the Antarctic cyclone budget and large-scale atmospheric circulation. Geophys. Res. Lett., 40(12), 3237−3241, https://doi.org/10.1002/grl.50560.
Van Den Broeke, M., C. Reijmer, D. Van As, and W. Boot, 2006: Daily cycle of the surface energy balance in Antarctica and the influence of clouds. International Journal of Climatology, 26(12), 1587−1605, https://doi.org/10.1002/joc.1323.
Wille, J. D., V. Favier, A. Dufour, I. V. Gorodetskaya, J. Turner, C. Agosta, and F. Codron, 2019: West Antarctic surface melt triggered by atmospheric rivers. Nature Geoscience, 12(11), 911−916, https://doi.org/10.1038/s41561-019-0460-1.
Wille, J. D., and Coauthors, 2022: Intense atmospheric rivers can weaken ice shelf stability at the Antarctic Peninsula. Communications Earth & Environment, 3, 90, https://doi.org/10.1038/S43247-022-00422-9.
Zhang, C. R., J. Zhang, and Q. G. Wu, 2021: Antarctic Peninsula regional circulation and its impact on the surface melt of Larsen C ice shelf. J. Climate, 34(17), 7297−7309, https://doi.org/10.1175/JCLI-D-20-1002.1.
Zou, X., D. H. Bromwich, A. Montenegro, S.-H. Wang, and L. S. Bai, 2021: Major surface melting over the Ross Ice Shelf part II: Surface energy balance. Quart. J. Roy. Meteor. Soc., 147(738), 2895−2916, https://doi.org/10.1002/qj.4105.