Bader, D. C., R. Leung, M. Taylor, and R. B. McCoy, 2019: E3SM-Project E3SM1.0 model output prepared for CMIP6 CMIP historical. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.4497.
Bian, J. C., 2009: Features of ozone mini-hole events over the Tibetan Plateau. Adv. Atmos. Sci., 26, 305−311, https://doi.org/10.1007/s00376-009-0305-8.
Bian, J. C., G. C. Wang, H. B. Chen, D. L. Qi, D. R. Lü, and X. J. Zhou, 2006: Ozone mini-hole occurring over the Tibetan Plateau in December 2003. Chinese Science Bulletin, 51, 885−888, https://doi.org/10.1007/s11434-006-0885-y.
Bian, J. C., R. C. Yan, H. B. Chen, D. R. Lü, and S. T. Massie, 2011: Formation of the summertime ozone valley over the Tibetan Plateau: The Asian summer monsoon and air column variations. Adv. Atmos. Sci., 28, 1318−1325, https://doi.org/10.1007/s00376-011-0174-9.
Bian, J. C., Q. J. Fan, and R. C. Yan, 2013: Summertime stratosphere-troposphere exchange over the Tibetan plateau and its climatic impact. Advances in Meteorological Science and Technology, 3, 22−28, https://doi.org/10.3969/j.issn.2095-1973.2013.02.002. (in Chinese with English abstract
Bian, J. C., D. Li, Z. X. Bai, Q. Li, D. R. Lyu, and X. J. Zhou, 2020: Transport of Asian surface pollutants to the global stratosphere from the Tibetan Plateau region during the Asian summer monsoon. National Science Review, 7, 516−533, https://doi.org/10.1093/nsr/nwaa005.
Boucher, O., and Coauthors, 2018: IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP historical. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.5195.
Boucher, O., and Coauthors, 2019: IPSL IPSL-CM6A-LR model output prepared for CMIP6 ScenarioMIP ssp126. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.5262.
Brasseur, G., and M. H. Hitchman, 1988: Stratospheric response to trace gas perturbations: Changes in ozone and temperature distributions. Science, 240, 634−637, https://doi.org/10.1126/science.240.4852.634.
Butchart, N., and A. A. Scaife, 2001: Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature, 410, 799−802, https://doi.org/10.1038/35071047.
Chen, S. B., L. Zhao, and Y. L. Tao, 2017: Stratospheric ozone change over the Tibetan Plateau. Atmospheric Pollution Research, 8, 528−534, https://doi.org/10.1016/j.apr.2016.11.007.
Cong, C. H., W. L. Li, and X. J. Zhou, 2002: Mass exchange between stratosphere and trotosphere over the Tibetan Plateau and its surroundings. Chinese Science Bulletin, 47, 508−512, https://doi.org/10.1360/02tb9117.
Danabasoglu, G., 2019a: NCAR CESM2 model output prepared for CMIP6 CMIP historical. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.7627.
Danabasoglu, G., 2019b: NCAR CESM2 model output prepared for CMIP6 ScenarioMIP. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.2201.
Danabasoglu, G., 2019c: NCAR CESM2-WACCM model output prepared for CMIP6 CMIP historical. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.10071.
Danabasoglu, G., 2019d: NCAR CESM2-WACCM model output prepared for CMIP6 ScenarioMIP. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.10026.
Danilin, M. Y., N.-D. Sze, M. K. W. Ko, J. M. Rodriguez, and A. Tabazadeh, 1998: Stratospheric cooling and Arctic ozone recovery. Geophys. Res. Lett., 25, 2141−2144, https://doi.org/10.1029/98GL01587.
Davis, S. M., and Coauthors, 2016: The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database: A long-term database for climate studies. Earth System Science Data, 8, 461−490, https://doi.org/10.5194/essd-8-461-2016.
de F. Forster, P. M., and K. P. Shine, 1997: Radiative forcing and temperature trends from stratospheric ozone changes. J. Geophys. Res., 102, 10841−10855, https://doi.org/10.1029/96JD03510.
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2015: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937−1958, https://doi.org/10.5194/gmd-9-1937-2016.
Fan, W. X., W. G. Wang, and J. C. Bian, 2008: The distribution of cross-tropopause mass flux over the Tibetan Plateau and its surrounding regions. Chinese Journal of Atmospheric Sciences, 32, 1309−1318, https://doi.org/10.3878/j.issn.1006-9895.2008.06.06. (in Chinese with English abstract
Fioletov, V. E., and T. G. Shepherd, 2003: Seasonal persistence of midlatitude total ozone anomalies. Geophys. Res. Lett., 30, 1417, https://doi.org/10.1029/2002GL016739.
Good, P., A. Sellar, Y. M. Tang, S. Rumbold, R. Ellis, D. Kelley, T. Kuhlbrodt, and J. Walton, 2019: MOHC UKESM1.0-LL model output prepared for CMIP6 ScenarioMIP. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.1567.
Guo, D., P. X. Wang, X. J. Zhou, Y. Liu, and W. L. Li, 2012: Dynamic effects of the South Asian high on the ozone valley over the Tibetan Plateau. Acta Meteorologica Sinica, 26, 216−228, https://doi.org/10.1007/s13351-012-0207-2.
Guo, D., Y. C. Su, C. H. Shi, J. J. Xu, and A. M. Jr. Powell, 2015: Double core of ozone valley over the Tibetan Plateau and its possible mechanisms. Journal of Atmospheric and Solar-Terrestrial Physics, 130−131, 127−131, https://doi.org/10.1016/j.jastp.2015.05.018.
Guo, H., and Coauthors, 2018a: NOAA-GFDL GFDL-CM4 model output historical. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.8594.
Guo, H., and Coauthors, 2018b: NOAA-GFDL GFDL-CM4 model output prepared for CMIP6 ScenarioMIP. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.9242.
He, C., and W. Zhou, 2020: Different enhancement of the east Asian summer monsoon under global warming and interglacial epochs simulated by CMIP6 models: Role of the subtropical high. J. Climate, 33, 9721−9733, https://doi.org/10.1175/JCLI-D-20-0304.1.
Huang, X., and Coauthors, 2020: South Asian summer monsoon projections constrained by the interdecadal Pacific oscillation. Science Advances, 6, eaay6546, https://doi.org/10.1126/sciadv.aay6546.
John, J. G., and Coauthors, 2018: NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 ScenarioMIP. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.1414.
Keeble, J., E. M. Bednarz, A. Banerjee, N. L. Abraham, N. R. P. Harris, A. C. Maycock, and J. A. Pyle, 2017: Diagnosing the radiative and chemical contributions to future changes in tropical column ozone with the UM-UKCA chemistry−climate model. Atmospheric Chemistry and Physics, 17, 13801−13818, https://doi.org/10.5194/acp-17-13801-2017.
Keeble, J., and Coauthors, 2020: Evaluating stratospheric ozone and water vapor changes in CMIP6 models from 1850-2100. Atmospheric Chemistry and Physics-Discussions, 1−68, https://doi.org/10.5194/acp-2019-1202.
Kiss, P., R. Müller, and I. M. Jánosi, 2007: Long-range correlations of extrapolar total ozone are determined by the global atmospheric circulation. Nonlinear Processes in Geophysics, 14, 435−442, https://doi.org/10.5194/npg-14-435-2007.
Krasting, J. P., and Coauthors, 2018: NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 CMIP historical. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.8597.
Li, L. J., 2019: CAS FGOALS-g3 model output prepared for CMIP6 CMIP historical. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.3356.
Li, Y. J., M. P. Chipperfield, W. H. Feng, S. S. Dhomse, R. J. Pope, F. Q. Li, and D. Guo, 2020: Analysis and attribution of total column ozone changes over the Tibetan Plateau during 1979−2017. Atmospheric Chemistry and Physics, 20, 8627−8639, https://doi.org/10.5194/acp-20-8627-2020.
Liu, C. X., Y. Liu, Z. N. Cai, S. T. Gao, J. C. Bian, X. Liu, and K. Chance, 2010: Dynamic formation of extreme ozone minimum events over the Tibetan Plateau during northern winters 1987−2001. J. Geophys. Res., 115, D18311, https://doi.org/10.1029/2009JD013130.
Liu, Y., W. L. Li, X. J. Zhou, and J. H. He, 2003: Mechanism of formation of the ozone valley over the Tibetan Plateau in summer—Transport and chemical process of ozone. Adv. Atmos. Sci., 20, 103−109, https://doi.org/10.1007/BF03342054.
Livesey, N. J., and Coauthors, 2016: EOS MLS Version 4.2x Level 2 data quality and description document. Rev., B, Jet Propulsion Laboratory, D‐33509.
Nowack, P. J., N. L. Abraham, A. C. Maycock, P. Braesicke, J. M. Gregory, M. M. Joshi, A. Osprey, and J. A. Pyle, 2015: A large ozone-circulation feedback and its implications for global warming assessments. Nature Climate Change, 5, 41−45, https://doi.org/10.1038/nclimate2451.
O’Neill, B. C., and Coauthors, 2017: The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change, 42, 169−180, https://doi.org/10.1016/j.gloenvcha.2015.01.004.
Park, S., and J. Shin, 2019: SNU SAM0-UNICON model output prepared for CMIP6 CMIP historical. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.7789.
Pitari, G., S. Palermi, G. Visconti, and R. G. Prinn, 1992: Ozone response to a CO2 doubling: Results from a stratospheric circulation model with heterogeneous chemistry. J. Geophys. Res., 97, 5953−5962, https://doi.org/10.1029/92JD00164.
Ramaswamy, V., M. D. Schwarzkopf, and W. J. Randel, 1996: Fingerprint of ozone depletion in the spatial and temporal pattern of recent lower-stratospheric cooling. Nature, 382, 616−618, https://doi.org/10.1038/382616a0.
Randel, W. J., and J. B. Cobb, 1994: Coherent variations of monthly mean total ozone and lower stratospheric temperature. J. Geophys. Res., 99, 5433−5447, https://doi.org/10.1029/93JD03454.
Rind, D., R. Suozzo, N. K. Balachandran, and M. J. Prather, 1990: Climate change and the middle atmosphere. Part I: The doubled CO2 Climate. J. Atmos. Sci., 47, 475−494, https://doi.org/10.1175/1520-0469(1990)047<0475:CCATMA>2.0.CO;2.
Seferian, R., 2018: CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 CMIP historical. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.4068.
Seferian, R., 2019: CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 ScenarioMIP. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.1395.
Sexton, D. M. H., 2001: The effect of stratospheric ozone depletion on the phase of the Antarctic Oscillation. Geophys. Res. Lett., 28, 3697−3700, https://doi.org/10.1029/2001GL013376.
Shindell, D., D. Rind, N. Balachandran, J. Lean, and P. Lonergan, 1999: Solar cycle variability, ozone, and climate. Science, 284, 305−308, https://doi.org/10.1126/science.284.5412.305.
Tang, Y. M., S. Rumbold, R. Ellis, D. Kelley, J. Mulcahy, A. Sellar, J. Walton, and C. Jones, 2019: MOHC UKESM1.0-LL model output prepared for CMIP6 CMIP historical. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.6113.
Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 7183−7192, https://doi.org/10.1029/2000JD900719.
Tian, W. S., and M. P. Chipperfield, 2005: A new coupled chemistry−climate model for the stratosphere: The importance of coupling for future O3-climate predictions. Quart. J. Roy. Meteor. Soc., 131, 281−303, https://doi.org/10.1256/qj.04.05.
Tian, W. S., M. P. Chipperfield, and Q. Huang, 2008: Effects of the Tibetan Plateau on total column ozone distribution. Tellus B: Chemical and Physical Meteorology, 60, 622−635, https://doi.org/10.1111/j.1600-0889.2008.00338.x.
Tu, H. W., H. Y. Tian, C. H. Wei, W. L. Wang, R. H. Zhang, and J. L. Luo, 2018: Impact of the east−west phase of South Asia High on water vapor distribution near tropopause over the Asian monsoon region. Climatic and Environmental Research, 23, 341−354, https://doi.org/10.3878/j.issn.1006-9585.2017.17048. (in Chinese with English abstract
van der A, R. J., M. A. F. Allaart, and H. J. Eskes, 2010: Multi sensor reanalysis of total ozone. Atmospheric Chemistry and Physics, 10, 11277−11294, https://doi.org/10.5194/acp-10-11277-2010.
Voldoire, A., 2018: CMIP6 simulations of the CNRM-CERFACS based on CNRM-CM6-1 model for CMIP experiment historical. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.4066.
Voldoire, A., 2019: CNRM-CERFACS CNRM-CM6-1 model output prepared for CMIP6 ScenarioMIP. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.1384.
World Meteorological Organization (WMO), 2018: Executive summary: Scientific assessment of ozone depletion. Rep. No. 58, 2018 World Meteorological Organization, Global Ozone Research and Monitoring Project, Geneva, Switzerland, 67 pp.
Wu, T. W., and Coauthors, 2020: BCC BCC-CSM2MR model output prepared for CMIP6 CMIP historical. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.2948.
Xie, F., and Coauthors, 2016: A connection from Arctic stratospheric ozone to El Niño-Southern oscillation. Environmental Research Letters, 11, 124026, https://doi.org/10.1088/1748-9326/11/12/124026.
Xin, X. G., and Coauthors, 2019: BCC BCC-CSM2MR model output prepared for CMIP6 ScenarioMIP. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.1732.
Yan, R. C., and J. C. Bian, 2015: Tracing the boundary layer sources of carbon monoxide in the Asian summer monsoon anticyclone using WRF-Chem. Adv. Atmos. Sci., 32, 943−951, https://doi.org/10.1007/s00376-014-4130-3.
Ye, Z. J., and Y. F. Xu, 2003: Climate characteristics of ozone over Tibetan Plateau. J. Geophys. Res., 108, 4654, https://doi.org/10.1029/2002JD003139.
Yukimoto, S., and Coauthors, 2019a: MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP historical. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.6842.
Yukimoto, S., and Coauthors, 2019b: MRI MRI-ESM2.0 model output prepared for CMIP6 ScenarioMIP. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.638.
Zhang, J., and Coauthors, 2018a: BCC BCC-ESM1 model output prepared for CMIP6 CMIP historical. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.2949.
Zhang, J. K., W. S. Tian, F. Xie, H. Y. Tian, J. L. Luo, J. Zhang, W. Liu, and S. Dhomse, 2014: Climate warming and decreasing total column ozone over the Tibetan Plateau during winter and spring. Tellus B: Chemical and Physical Meteorology, 66, 23415, https://doi.org/10.3402/tellusb.v66.23415.
Zhang, J. K., and Coauthors, 2018b: Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift. Nature Communications, 9, 206, https://doi.org/10.1038/s41467-017-02565-2.
Zhou, L. B., H. Zou, S. P. Ma, and P. Li, 2013: The Tibetan ozone low and its long-term variation during 1979−2010. Acta Meteorologica Sinica, 27, 75−86, https://doi.org/10.1007/s13351-013-0108-9.
Zhou, S. W., and R. H. Zhang, 2005: Decadal variations of temperature and geopotential height over the Tibetan Plateau and their relations with Tibet ozone depletion. Geophys. Res. Lett., 32, L18705, https://doi.org/10.1029/2005GL023496.
Zhou, X. J., and C. Luo, 1994: Ozone valley over Tibetan Plateau. Journal of Meteorological Research, 8, 505−506.
Zhou, X. J., W. L. Li, L. X. Chen, and Y. Liu, 2004: Study of ozone change over Tibetan Plateau. Acta Meteorologica Sinica, 62, 513−527, https://doi.org/10.3321/j.issn:0577-6619.2004.05.001. (in Chinese with English abstract