Baldocchi, D. D., 2003: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Global Change Biology, 9, 479−492, https://doi.org/10.1046/j.1365-2486.2003.00629.x.
Baldocchi, D. D., and T. Meyers, 1998: On using eco-physiological, micrometeorological and biogeochemical theory to evaluate carbon dioxide, water vapor and trace gas fluxes over vegetation: A perspective. Agricultural and Forest Meteorology, 90, 1−25, https://doi.org/10.1016/S0168-1923(97)00072-5.
Bocquet, F., D. Helmig, B. A. Van Dam, and C. W. Fairall, 2011: Evaluation of the flux gradient technique for measurement of ozone surface fluxes over snowpack at Summit, Greenland. Atmospheric Measurement Techniques, 4, 2305−2321, https://doi.org/10.5194/amt-4-2305-2011.
Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181−189, https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.
Cape, J. N., 2008: Surface ozone concentrations and ecosystem health: Past trends and a guide to future projections. Science of The Total Environment, 400, 257−269, https://doi.org/10.1016/j.scitotenv.2008.06.025.
Droppo, J. G., 1985: Concurrent measurements of ozone dry deposition using eddy correlation and profile flux methods. J. Geophys. Res. Atmos., 90, 2111−2118, https://doi.org/10.1029/JD090iD01p02111.
Feng, Z. Z., E. Z. Hu, X. K. Wang, L. J. Jiang, and X. J. Liu, 2015: Ground-level O3 pollution and its impacts on food crops in China: A review. Environmental Pollution, 199, 42−48, https://doi.org/10.1016/j.envpol.2015.01.016.
Foken, T., 2006: 50 years of the Monin-Obukhov similarity theory. Bound.-Layer Meteorol., 119, 431−447, https://doi.org/10.1007/s10546-006-9048-6.
Fu, Y., H. Liao, and Y. Yang, 2019: Interannual and decadal changes in tropospheric ozone in China and the associated chemistry-climate interactions: A review. Adv. Atmos. Sci., 36(9), 975−993, https://doi.org/10.1007/s00376-019-8216-9.
Grünhage, L., H. D. Haenel, and H. J. Jäger, 2000: The exchange of ozone between vegetation and atmosphere: Micrometeorological measurement techniques and models. Environmental Pollution, 109, 373−392, https://doi.org/10.1016/S0269-7491(00)00041-5.
Güsten, H., G. Heinrich, R. W. H. Schmidt, and U. Schurath, 1992: A novel ozone sensor for direct eddy flux measurements. Journal of Atmospheric Chemistry, 14, 73−84, https://doi.org/10.1007/BF00115224.
Ibrom, A., E. Dellwik, H. Flyvbjerg, N. O. Jensen, and K. Pilegaard, 2007: Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems. Agricultural and Forest Meteorology, 147, 140−156, https://doi.org/10.1016/j.agrformet.2007.07.007.
Karlsson, P. E., and Coauthors, 2007: Risk assessments for forest trees: the performance of the ozone flux versus the AOT concepts. Environmental Pollution, 146, 608−616, https://doi.org/10.1016/j.envpol.2006.06.012.
Keronen, P., and Coauthors, 2003: Ozone flux measurements over a scots pine forest using eddy covariance method: Performance evaluation and comparison with flux-profile method. Boreal Environment Research, 8, 425−443.
Krzyscin, J., P. Krizan, and J. Jarosławski, 2007: Long-term changes in the tropospheric column ozone from the ozone soundings over Europe. Atmos. Environ., 41, 606−616, https://doi.org/10.1016/j.atmosenv.2006.08.026.
Loubet, B., and Coauthors, 2013: Investigating discrepancies in heat, CO2 fluxes and O3 deposition velocity over maize as measured by the eddy-covariance and the aerodynamic gradient methods. Agricultural and Forest Meteorology, 169, 35−50, https://doi.org/10.1016/j.agrformet.2012.09.010.
Massman, W. J., 2004: Toward an ozone standard to protect vegetation based on effective dose: A review of deposition resistances and a possible metric. Atmos. Environ., 38, 2323−2337, https://doi.org/10.1016/j.atmosenv.2003.09.079.
Massman, W. J., and X. Lee, 2002: Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agricultural and Forest Meteorology, 113, 121−144, https://doi.org/10.1016/S0168-1923(02)00105-3.
Mayer, J. C., A. Bargsten, U. Rummel, F. X. Meixner, and T. Foken, 2011: Distributed Modified Bowen Ratio method for surface layer fluxes of reactive and non-reactive trace gases. Agricultural and Forest Meteorology, 151, 655−668, https://doi.org/10.1016/j.agrformet.2010.10.001.
Meyers, T. P., M. E. Hall, S. E. Lindberg, and K. Kim, 1996: Use of the modified bowen-ratio technique to measure fluxes of trace gases. Atmos. Environ., 30, 3321−3329, https://doi.org/10.1016/1352-2310(96)00082-9.
Mills, G., and Coauthors, 2011: New stomatal flux-based critical levels for ozone effects on vegetation. Atmos. Environ., 45, 5064−5068, https://doi.org/10.1016/j.atmosenv.2011.06.009.
Moncrieff, J. B., and Coauthors, 1997: A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J. Hydrol., 188−189, 589−611, https://doi.org/10.1016/S0022-1694(96)03194-0.
Muller, J. B. A., M. Coyle, D. Fowler, M. W. Gallagher, E. G. Nemitz, and C. J. Percival, 2009: Comparison of ozone fluxes over grassland by gradient and eddy covariance technique. Atmospheric Science Letters, 10, 164−169, https://doi.org/10.1002/asl.226.
Muller, J. B. A., C. J. Percival, M. W. Gallagher, D. Fowler, M. Coyle, and E. Nemitz, 2010: Sources of uncertainty in eddy covariance ozone flux measurements made by dry chemiluminescence fast response analysers. Atmospheric Measurement Techniques, 3, 163−176, https://doi.org/10.5194/amt-3-163-2010.
Musselman, R. C., A. S. Lefohn, W. J. Massman, and R. L. Heath, 2006: A critical review and analysis of the use of exposure- and flux-based ozone indices for predicting vegetation effects. Atmos. Environ., 40, 1869−1888, https://doi.org/10.1016/j.atmosenv.2005.10.064.
Paoletti, E., and W. J. Manning, 2007: Toward a biologically significant and usable standard for ozone that will also protect plants. Environmental Pollution, 150, 85−95, https://doi.org/10.1016/j.envpol.2007.06.037.
Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteorol., 9, 857−861, https://doi.org/10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2.
Pleijel, H., H. Danielsson, L. Emberson, M. R. Ashmore, and G. Mills, 2007: Ozone risk assessment for agricultural crops in Europe: Further development of stomatal flux and flux-response relationships for European wheat and potato. Atmos. Environ., 41, 3022−3040, https://doi.org/10.1016/j.atmosenv.2006.12.002.
Rinne, J., J.-P. Tuovinen, T. Laurila, H. Hakola, M. Aurela, and H. Hypén, 2000: Measurements of hydrocarbon fluxes by a gradient method above a northern boreal forest. Agricultural and Forest Meteorology, 102, 25−37, https://doi.org/10.1016/S0168-1923(00)00088-5.
Song, X. Z, H. S. Zhang, J. Y. Chen, and S. U. Park, 2010: Flux-gradient relationships in the atmospheric surface layer over the Gobi Desert in China. Bound.-Layer Meteorol., 134, 487−498, https://doi.org/10.1007/s10546-009-9457-4.
Stella, P., and Coauthors, 2012: Comparison of methods for the determination of NO-O3-NO2 fluxes and chemical interactions over a bare soil. Atmospheric Measurement Techniques, 5, 1241−1257, https://doi.org/10.5194/amt-5-1241-2012.
van Dingenen, R., F. J. Dentener, F. Raes, M. C. Krol, L. Emberson, and J. Cofala, 2009: The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos. Environ., 43, 604−618, https://doi.org/10.1016/j.atmosenv.2008.10.033.
Walker, J. T., W. P. Robarge, Y. Wu, and T. P. Meyers, 2006: Measurement of bi-directional ammonia fluxes over soybean using the modified Bowen-ratio technique. Agricultural and Forest Meteorology, 138, 54−68, https://doi.org/10.1016/j.agrformet.2006.03.011.
Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of flux measurements for density effects due to heat and water vapour transfer. Quart. J. Roy. Meteorol. Soc., 106, 85−100, https://doi.org/10.1002/qj.49710644707.
Wilczak, J. M., S. P. Oncley, and S. A. Stage, 2001: Sonic anemometer tilt correction algorithms. Bound.-Layer Meteorol., 99, 127−150, https://doi.org/10.1023/A:1018966204465.
Wilson, K., and Coauthors, 2002: Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 113, 223−243, https://doi.org/10.1016/S0168-1923(02)00109-0.
Wolff, V., I. Trebs, C. Ammann, and F. X. Meixner, 2010: Aerodynamic gradient measurements of the NH3-HNO3-NH4NO3 triad using a wet chemical instrument: an analysis of precision requirements and flux errors. Atmospheric Measurement Techniques, 3, 187−208, https://doi.org/10.5194/amt-3-187-2010.
Wu, Z. Y., L. Zhang, X. M. Wang, and J. W. Munger, 2015: A modified micrometeorological gradient method for estimating O3 dry depositions over a forest canopy. Atmospheric Chemistry and Physics, 15, 7487−7496, https://doi.org/10.5194/acp-15-7487-2015.
Zahn, A., J. Weppner, H. Widmann, K. Schlote-Holubek, B. Burger, T. Kühner, and H. Franke, 2012: A fast and precise chemiluminescence ozone detector for eddy flux and airborne application. Atmospheric Measurement Techniques, 5, 363−375, https://doi.org/10.5194/amt-5-363-2012.
Zhu, Z. L., F. H. Zhao, L. Voss, L. K. Xu, X. M. Sun, G. R. Yu, and F. X. Meixner, 2015: The effects of different calibration and frequency response correction methods on eddy covariance ozone flux measured with a dry chemiluminescence analyzer. Agricultural and Forest Meteorology, 213, 114−125, https://doi.org/10.1016/j.agrformet.2015.06.016.