An, S. I., and F.-F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17(12), 2399−2412, https://doi.org/10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2.
Ashok, K., S. K. Behera, S. A. Rao, H. Y. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.
Chen, N., X. H. Fang, and J.-Y. Yu, 2022: A multiscale model for El Niño complexity. npj Climate and Atmospheric Science, 5(1), 16, https://doi.org/10.1038/s41612-022-00241-x.
DiNezio, P. N., and Coauthors, 2017: A 2 year forecast for a 60−80% chance of La Niña in 2017−2018. Geophys. Res. Lett., 44(22), 11 624−11 635,
Fang, X. H., and M. Mu, 2018: Both air-sea components are crucial for El Niño forecast from boreal spring. Scientific Reports, 8, 10501, https://doi.org/10.1038/s41598-018-28964-z.
Fang, X. H., and R. H. Xie, 2020: A brief review of ENSO theories and prediction. Science China Earth Sciences, 63(4), 476−491, https://doi.org/10.1007/s11430-019-9539-0.
Fang, X. H., and F. Zheng, 2021: Effect of the air–sea coupled system change on the ENSO evolution from boreal spring. Climate Dyn., 57(1−2), 109−120, https://doi.org/10.1007/s00382-021-05697-w.
Fang, X.-H., F. Zheng, Z.-Y. Liu, and J. Zhu, 2019: Decadal modulation of ENSO spring persistence barrier by thermal damping processes in the observation. Geophys. Res. Lett., 46(12), 6892−6899, https://doi.org/10.1029/2019GL082921.
Hu, S. N., and A. V. Fedorov, 2018: Cross-equatorial winds control El Niño diversity and change. Nature Climate Change, 8(9), 798−802, https://doi.org/10.1038/s41558-018-0248-0.
Hu, Z.-Z., A. Kumar, Y. Xue, and B. Jha, 2014: Why were some La Niñas followed by another La Niña. Climate Dyn., 42(3−4), 1029−1042, https://doi.org/10.1007/s00382-013-1917-3.
Hu, Z.-Z., A. Kumar, J. S. Zhu, P. T. Peng, and B. H. Huang, 2019: On the challenge for ENSO cycle prediction: An example from NCEP Climate Forecast System version 2. J. Climate, 32(1), 183−194, https://doi.org/10.1175/JCLI-D-18-0285.1.
Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54(7), 811−829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.
Kao, H. Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22(3), 615−632, https://doi.org/10.1175/2008JCLI2309.1.
Kumar, A. and Z.-Z. Hu, 2014: Interannual and interdecadal variability of ocean temperature along the equatorial Pacific in conjunction with ENSO. Climate Dyn., 42(5−6), 1243−1258, https://doi.org/10.1007/s00382-013-1721-0.
Latif, M., T. P. Barnett, M. A. Cane, M. Flügel, N. E. Graham, H. Von Storch, J. S. Xu, and S. E. Zebiak, 1994: A review of ENSO prediction studies. Climate Dyn., 9(4), 167−179, https://doi.org/10.1007/BF00208250.
Li, X. F., Z.-Z. Hu, Y.-H. Tseng, Y. Y. Liu, and P. Liang, 2022: A historical perspective of the La Niña Event in 2020/21. J. Geophys. Res., 127(7), e2021JD035546, https://doi.org/10.1029/2021JD035546.
McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in earth science. Science, 314(5806), 1740−1745, https://doi.org/10.1126/science.1132588.
Mu, M., W. S. Duan, and B. Wang, 2007: Season-dependent dynamics of nonlinear optimal error growth and El Niño-Southern Oscillation predictability in a theoretical model. J. Geophys. Res., 112, D10113, https://doi.org/10.1029/2005JD006981.
Timmermann, A., and Coauthors, 2018: El Niño–Southern oscillation complexity. Nature, 559(7715), 535−545, https://doi.org/10.1038/s41586-018-0252-6.
Tseng, Y.-H., Z.-Z. Hu, R.-Q. Ding, and H.-C. Chen, 2017: An ENSO prediction approach based on ocean conditions and ocean–atmosphere coupling. Climate Dyn., 48(5−6), 2025−2044, https://doi.org/10.1007/s00382-016-3188-2.
Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118(507), 877−926, https://doi.org/10.1002/qj.49711850705.
Wu, X., Y. M. Okumura, C. Deser, and P. N. Dinezio, 2021: Two-year dynamical predictions of ENSO event duration during 1954−2015. J. Climate, 34(10), 4069−4087, https://doi.org/10.1175/JCLI-D-20-0619.1.
Xie, S. P., Q. H. Peng, Y. Kamae, X. T. Zheng, H. Tokinaga, and D. X. Wang, 2018: Eastern pacific ITCZ dipole and ENSO diversity. J. Climate, 31(11), 4449−4462, https://doi.org/10.1175/JCLI-D-17-0905.1.
Zheng, F., and J. Zhu, 2010: Spring predictability barrier of ENSO events from the perspective of an ensemble prediction system. Global and Planetary Change, 72(3), 108−117, https://doi.org/10.1016/j.gloplacha.2010.01.021.
Zheng, F., L. S. Feng, and J. Zhu, 2015: An incursion of off-equatorial subsurface cold water and its role in triggering the “double dip” La Niña event of 2011. Adv. Atmos. Sci., 32(6), 731−742, https://doi.org/10.1007/s00376-014-4080-9.
Zheng, F., X. H. Fang, J. Zhu, J.-Y. Yu, and X. C. Li, 2016: Modulation of Bjerknes feedback on the decadal variations in ENSO predictability. Geophys. Res. Lett., 43(24), 12 560−12 568,
Zhu, J. S., A. Kumar, B. H. Huang, M. A. Balmaseda, Z.-Z. Hu, L. Marx, and J. L. Kinter III, 2016: The role of off-equatorial surface temperature anomalies in the 2014 El Niño prediction. Scientific Reports, 6, 19677, https://doi.org/10.1038/srep19677.