Ajayi, A., J. Le Sommer, E. Chassignet, J.-M. Molines, X. B. Xu, A. Albert, and E. Cosme, 2020: Spatial and temporal variability of the North Atlantic eddy field from two kilometric-resolution ocean models. J. Geophys. Res., 125, e2019JC015827, https://doi.org/10.1029/2019JC015827.
Ajayi, A., J. Le Sommer, E. P. Chassignet, J.-M. Molines, X. B. Xu, A. Albert, and W. Dewar, 2021: Diagnosing cross-scale kinetic energy exchanges from two submesoscale permitting ocean models. Journal of Advances in Modeling Earth Systems, 13, e2019MS001923, https://doi.org/10.1029/2019MS001923.
Arbic, B. K., and Coauthors, 2018: A primer on global internal tide and internal gravity wave continuum modeling in HYCOM and MITgcm. New Frontiers in Operational Oceanography, E. Chassignet et al., Eds., GODAE OceanView, 307−392, https://doi.org/10.17125/gov2018.ch13.
Barthel, A., A. M. Hogg, S. Waterman, and S. Keating, 2017: Jet-topography interactions affect energy pathways to the deep Southern Ocean. J. Phys. Oceanogr., 47, 1799−1816, https://doi.org/10.1175/JPO-D-16-0220.1.
Biri, S., N. Serra, M. G. Scharffenberg, and D. Stammer, 2016: Atlantic sea surface height and velocity spectra inferred from satellite altimetry and a hierarchy of numerical simulations. J. Geophys. Res., 121, 4157−4177, https://doi.org/10.1002/2015JC011503.
Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modelling, 4, 55−88, https://doi.org/10.1016/S1463-5003(01)00012-9.
Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California current system. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 29−43, https://doi.org/10.1175/2007JPO3671.1.
Capet, X., G. Roullet, P. Klein, and G. Maze, 2016: Intensification of upper-ocean submesoscale turbulence through charney baroclinic instability. J. Phys. Oceanogr., 46, 3365−3384, https://doi.org/10.1175/JPO-D-16-0050.1.
Chang, P., and Coauthors, 2020: An unprecedented set of high-resolution earth system simulations for understanding multiscale interactions in climate variability and change. Journal of Advances in Modeling Earth Systems, 12, e2020MS002298, https://doi.org/10.1029/2020MS002298.
Chassignet, E. P., and D. P. Marshall, 2008: Gulf Stream separation in numerical ocean models. Ocean Modeling in an Eddying Regime, M. W. Hecht and H. Hasumi, Eds., AGU, 39−62, https://doi.org/10.1029/177GM05.
Chassignet, E. P., and X. B. Xu, 2017: Impact of horizontal resolution (1/12° to 1/50°) on Gulf Stream separation, penetration, and variability. J. Phys. Oceanogr., 47, 1999−2021, https://doi.org/10.1175/JPO-D-17-0031.1.
Chassignet, E. P., L. T. Smith, G. R. Halliwell, and R. Bleck, 2003: North Atlantic simulations with the hybrid coordinate ocean model (HYCOM): Impact of the vertical coordinate choice, reference pressure, and thermobaricity. J. Phys. Oceanogr., 33, 2504−2526, https://doi.org/10.1175/1520-0485(2003)033<2504:NASWTH>2.0.CO;2.
Chassignet, E. P., J. G. Richman, E. J. Metzger, X. B. Xu, P. G. Hogan, B. K. Arbic, and A. J. Wallcraft, 2014: HYCOM high-resolution eddying simulations. CLIVAR Exchanges, 19, 22−25.
Chassignet, E. P., A. Pascual, J. Tintoré, and J. Verron, 2018: New Frontiers in Operational Oceanography. GODAE OceanView, 811 pp.
Chassignet, E. P., and Coauthors, 2020a: Impact of horizontal resolution on global ocean-sea ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geoscientific Model Development, 13, 4595−4637, https://doi.org/10.5194/gmd-13-4595-2020.
Chassignet, E. P., and Coauthors, 2020b: Impact of horizontal resolution on the energetics of global ocean-sea-ice model simulations. CLIVAR Variations/Exchanges, 18, 23−30, https://doi.org/10.5065/g8w0-fy32.
Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91, 167−216, https://doi.org/10.1016/j.pocean.2011.01.002.
Danabasoglu, G., and Coauthors, 2020: The community earth system model version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.
Dong, J. H., B. Fox-Kemper, H. Zhang, and C. M. Dong, 2020: The scale of submesoscale baroclinic instability globally. J. Phys. Oceanogr., 50, 2649−2667, https://doi.org/10.1175/JPO-D-20-0043.1.
Dufau, C., M. Orsztynowicz, G. Dibarboure, R. Morrow, and P.-Y. Le Traon, 2016: Mesoscale resolution capability of altimetry: Present and future. J. Geophys. Res., 121, 4910−4927, https://doi.org/10.1002/2015JC010904.
Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 1145−1165, https://doi.org/10.1175/2007JPO3792.1.
Fox-Kemper, B., and Coauthors, 2019: Challenges and prospects in ocean circulation models. Frontiers in Marine Science, 6, 65, https://doi.org/10.3389/fmars.2019.00065.
Griffies, S. M., and Coauthors, 2000: Developments in ocean climate modelling. Ocean Modelling, 2, 123−192, https://doi.org/10.1016/S1463-5003(00)00014-7.
Griffies, S. M., and Coauthors, 2015: Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. J. Climate, 28, 952−977, https://doi.org/10.1175/JCLI-D-14-00353.1.
Haarsma, R. J., and Coauthors, 2016: High resolution model intercomparison project (HighResMIP v1.0) for CMIP6. Geoscientific Model Development, 9, 4185−4208, https://doi.org/10.5194/gmd-9-4185-2016.
Hallberg, R., 2013: Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Modelling, 72, 92−103, https://doi.org/10.1016/j.ocemod.2013.08.007.
Hewitt, H. T., and Coauthors, 2017: Will high-resolution global ocean models benefit coupled predictions on short-range to climate timescales? Ocean Modelling, 120, 120−136, https://doi.org/10.1016/j.ocemod.2017.11.002.
Hewitt, H. T., and Coauthors, 2020: Resolving and parameterising the ocean mesoscale in earth system models. Current Climate Change Reports, 6, 137−152, https://doi.org/10.1007/s40641-020-00164-w.
Holton, J. R., and G. J. Hakim, 2012: An Introduction to Dynamic Meteorology. 5th ed. Academic Press, 552 pp.
Houghton, R. L., G. Thompson, and W. B. Bryan, 1977: Petrological and geochemical studies of the New England Seamount Chain. AGU Trans, 58, 530.
Hurlburt, H. E., and P. J. Hogan, 2000: Impact of 1/8° to 1/64° resolution on Gulf Stream model-data comparisons in basin-scale subtropical Atlantic Ocean models. Dyn. Atmos. Oceans, 32, 283−329, https://doi.org/10.1016/S0377-0265(00)00050-6.
Klein, P., G. Lapeyre, G. Roullet, S. Le Gentil, and H. Sasaki, 2011: Ocean turbulence at meso and submesoscales: Connection between surface and interior dynamics. Geophys. Astrophys. Fluid Dyn., 105, 421−437, https://doi.org/10.1080/03091929.2010.532498.
Le Sommer, J., E. P. Chassignet, and A. J. Wallcraft, 2018: Ocean circulation modeling for operational oceanography: Current status and future challenges. New Frontiers in Operational Oceanography, E. Chassignet et al., Eds., GODAE OceanView, 289−306, https://doi.org/10.17125/gov2018.ch12.
Lemarié, F., G. Samson, J.-L. Redelsperger, H. Giordani, T. Brivoal, and G. Madec, 2020: A simplified atmospheric boundary layer model for an improved representation of air-sea interactions in eddying oceanic models: Implementation and first evaluation in NEMO (4.0). Geoscientific Model Development Discussions, in press, https://doi.org/10.5194/gmd-2020-210.
Lévy M., P. Klein, A.-M. Tréguier, D. Iovino, G. Madec, S. Masson, and K. Takahashi, 2010: Modifications of gyre circulation by sub-mesoscale physics. Ocean Modelling, 34, 1−15, https://doi.org/10.1016/j.ocemod.2010.04.001.
Lin, P. F., and Coauthors, 2020: LICOM model datasets for the CMIP6 ocean model intercomparison project. Adv. Atmos. Sci., 37, 239−249, https://doi.org/10.1007/s00376-019-9208-5.
Liu, H. L., X. H. Zhang, W. Li, Y. Q. Yu, and R. C. Yu, 2004: An eddy-permitting oceanic general circulation model and its preliminary evaluation. Adv. Atmos. Sci., 21, 675−690, https://doi.org/10.1007/bf02916365.
Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang, 2012: The baseline evaluation of LASG/IAP Climate system ocean model (LICOM) version 2. Acta Meteorologica Sinica, 26, 318−329, https://doi.org/10.1007/s13351-012-0305-y.
Ma, X. H., and Coauthors, 2016: Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535, 533−537, https://doi.org/10.1038/nature18640.
Meinen, C. S., and D. S. Luther, 2016: Structure, transport, and vertical coherence of the Gulf Stream from the Straits of Florida to the Southeast Newfoundland Ridge. Deep Sea Research Part I: Oceanographic Research Papers, 111, 16−17, https://doi.org/10.1016/j.dsr.2016.02.002.
Paiva, A. M., J. T. Hargrove, E. P. Chassignet, and R. Bleck, 1999: Turbulent behavior of a fine mesh (1/12°) numerical simulation of the North Atlantic. J. Mar. Sys., 21, 307−320, https://doi.org/10.1016/S0924-7963(99)00020-2.
Qiu, B., S. M. Chen, P. Klein, J. B, Wang, H. Torres, L.-L. Fu, and D. Menemenlis, 2018: Seasonality in transition scale from balanced to unbalanced motions in the world ocean. J. Phys. Oceanogr., 48, 591−605, https://doi.org/10.1175/JPO-D-17-0169.1.
Qiu, B., S. M. Chen, P. Klein, H. Torres, J. B. Wang, L.-L. Fu, and D. Menemenlis, 2020: Reconstructing upper-ocean vertical velocity field from sea surface height in the presence of unbalanced motion. J. Phys. Oceanogr., 50, 55−79, https://doi.org/10.1175/JPO-D-19-0172.1.
Rackow, T., H. F. Goessling, T. Jung, D. Sidorenko, T. Semmler, D. Barbi, and D. Handorf, 2018: Towards multi-resolution global climate modeling with ECHAM6-FESOM. Part II: Climate variability. Climate Dyn., 50, 2369−2394, https://doi.org/10.1007/s00382-016-3192-6.
Rackow, T., D. V. Sein, T. Semmler, S. Danilov, N. V. Koldunov, D. Sidorenko, Q. Wang, and T. Jung, 2019: Sensitivity of deep ocean biases to horizontal resolution in prototype CMIP6 simulations with AWI-CM1.0. Geoscientific Model Development, 12, 2635−2656, https://doi.org/10.5194/gmd-12-2635-2019.
Renault, L., M. J. Molemaker, J. Gula, S. Masson, and J. C. McWilliams, 2016: Control and stabilization of the Gulf Stream by oceanic current interaction with the atmosphere. J. Phys. Oceanogr., 46, 3439−3453, https://doi.org/10.1175/JPO-D-16-0115.1.
Renault, L., J. C. McWilliams, and P. Penven, 2017: Modulation of the Agulhas Current retroflection and leakage by oceanic current interaction with the atmosphere in coupled simulations. J. Phys. Oceanogr., 47, 2077−2100, https://doi.org/10.1175/JPO-D-16-0168.1.
Renault, L., S. Masson, T. Arsouze, G. Madec, and J. C. McWilliams, 2020: Recipes for how to force oceanic model dynamics. Journal of Advances in Modeling Earth Systems, 12, e2019MS001715, https://doi.org/10.1029/2019MS001715.
Richman, J. G., B. K. Arbic, J. F. Shriver, E. J. Metzger, and A. J. Wallcraft, 2012: Inferring dynamics from the wavenumber spectra of an eddying global ocean model with embedded tides. J. Geophys. Res., 117, C12012, https://doi.org/10.1029/2012JC008364.
Rio, M.-H., S. Mulet, and N. Picot, 2014: Beyond GOCE for the ocean circulation estimate: Synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents. Geophys. Res. Lett., 41, 8918−8925, https://doi.org/10.1002/2014GL061773.
Rocha, C. B., T. K. Chereskin, S. T. Gille, and D. Menemenlis, 2016: Mesoscale to submesoscale wavenumber spectra in drake passage. J. Phys. Oceanogr., 46, 601−620, https://doi.org/10.1175/JPO-D-15-0087.1.
Rossby, T., 1996: The North Atlantic Current and surrounding waters: At the crossroads. Rev. Geophys., 34, 463−481, https://doi.org/10.1029/96RG02214.
Roullet, G., J. C. McWilliams, X. Capet, and M. J. Molemaker, 2012: Properties of steady geostrophic turbulence with isopycnal outcropping. J. Phys. Oceanogr., 42, 18−38, https://doi.org/10.1175/JPO-D-11-09.1.
Sasaki, H., and P. Klein, 2012: SSH wavenumber spectra in the North Pacific from a high-resolution realistic simulation, J. Phys. Oceanogr., 42, 1233−1241, https://doi.org/10.1175/JPO-D-11-0180.1.
Schubert, R., F. U. Schwarzkopf, B. Baschek, and A. Biastoch, 2019: Submesoscale impacts on mesoscale Agulhas dynamics. Journal of Advances in Modeling Earth Systems, 11, 2745−2767, https://doi.org/10.1029/2019MS001724.
Sein, D. V., and Coauthors, 2018: The relative influence of atmospheric and oceanic model resolution on the circulation of the North Atlantic Ocean in a coupled climate model. Journal of Advances in Modeling Earth Systems, 10, 2026−2041, https://doi.org/10.1029/2018MS001327.
Sidorenko, D., and Coauthors, 2015: Towards multi-resolution global climate modeling with ECHAM6–FESOM. Part I: Model formulation and mean climate. Climate Dyn., 44, 757−780, https://doi.org/10.1007/s00382-014-2290-6.
Sidorenko, D., and Coauthors, 2018: Influence of a salt plume parameterization in a coupled climate model. Journal of Advances in Modeling Earth Systems, 10, 2357−2373, https://doi.org/10.1029/2018MS001291.
Small, R. J., and Coauthors, 2008: Air-sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274−319, https://doi.org/10.1016/j.dynatmoce.2008.01.001.
Smith, R. D., M. E. Maltrud, F. O. Bryan, and M. W. Hecht, 2000: Numerical simulation of the North Atlantic Ocean at. J. Phys. Oceanogr., 30, 1532−1561, https://doi.org/10.1175/1520-0485(2000)030<1532:NSOTNA>2.0.CO;2.
Smith, W. H. F., and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 1956−1962, https://doi.org/10.1126/science.277.5334.1956.
Smyth, W. D., J. N. Moum, and D. R. Caldwell, 2001: The efficiency of mixing in turbulent patches: Inferences from direct simulations and microstructure observations. J. Phys. Oceanogr., 31, 1969−1992, https://doi.org/10.1175/1520-0485(2001)031<1969:TEOMIT>2.0.CO;2.
Soufflet, Y., P. Marchesiello, F. Lemarié, J. Jouanno, X. Capet, L. Debreu, and R. Benshila, 2016: On effective resolution in ocean models. Ocean Modell., 98, 36−50, https://doi.org/10.1016/j.ocemod.2015.12.004.
Stewart, K. D., A. M. Hogg, S. M. Griffies, A. P. Heerdegen, M. L. Ward, P. Spence, and M. H. England, 2017: Vertical resolution of baroclinic modes in global ocean models. Ocean Modelling, 113, 50−65, https://doi.org/10.1016/j.ocemod.2017.03.012.
Su, Z., J. B. Wang, P. Klein, A. F. Thompson, and D. Menemenlis, 2018: Ocean submesoscales as a key component of the global heat budget. Nature Communications, 9, 775, https://doi.org/10.1038/s41467-018-02983-w.
Tchilibou, M., L. Gourdeau, R. Morrow, G. Serazin, B. Djath, and F. Lyard, 2018: Spectral signatures of the tropical Pacific dynamics from model and altimetry: A focus on the meso-/submesoscale range. Ocean Science, 14, 1283−1301, https://doi.org/10.5194/os-14-1283-2018.
Thomas, L. N., A. Tandon, and A. Mahadevan, 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, M. W. Hecht and H. Hasumi, Eds., AGU, 17−38, https://doi.org/10.1029/177GM04.
Thoppil, P. G., J. G. Richman, and P. J. Hogan, 2011: Energetics of a global ocean circulation model compared to observations. Geophys. Res. Lett., 38, L15607, https://doi.org/10.1029/2011GL048347.
Torres, H. S., P. Klein, D. Menemenlis, B. Qiu, Z. Su, J. B. Wang, S. M. Chen, and L.-L. Fu, 2018: Partitioning ocean motions into balanced motions and internal gravity waves: A modeling study in anticipation of future space missions. J. Geophys. Res., 123, 8084−8105, https://doi.org/10.1029/2018JC014438.
Tsujino H., and Coauthors, 2020: Evaluation of global ocean-sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geoscientific Model Development, 13, 3643−3708, https://doi.org/10.5194/gmd-13-3643-2020.
Wang, P. F., and Coauthors, 2020: The GPU version of LICOM3 under HIP framework and its large-scale application. Geoscientific Model Development Discussions, in press.
Xu, Y. S., and L.-L. Fu, 2011: Global variability of the wavenumber spectrum of oceanic mesoscale turbulence. J. Phys. Oceanogr., 41, 802−809, https://doi.org/10.1175/2010JPO4558.1.
Xu, Y. S., and L.-L. Fu, 2012: The effects of altimeter instrument noise on the estimation of the wavenumber spectrum of sea surface height. J. Phys. Oceanogr., 42, 2229−2233, https://doi.org/10.1175/JPO-D-12-0106.1.
Yeung, P. K., X. M. Zhai, and K. R. Sreenivasan, 2015: Extreme events in computational turbulence. Proceedings of the National Academy of Sciences of the United States of America, 112, 12 633−12 638, https://doi.org/10.1073/pnas.1517368112.
Yu, Y. Q., S. L. Tang, H. L. Liu, P. F. Lin, and X. L. Li, 2018: Development and evaluation of the dynamic framework of an ocean general circulation model with arbitrary orthogonal curvilinear coordinate. Chinese Journal of Atmospheric Sciences, 42, 877−889, https://doi.org/10.3878/j.issn.1006-9895.1805.17284. (in Chinese with English abstract
Zhang, X. H., and X. Z. Liang, 1989: A numerical world ocean general circulation model. Adv. Atmos. Sci., 6, 44−61, https://doi.org/10.1007/BF02656917.
Zhang, X. H., and D. L. Boyer, 1991: Current deflections in the vicinity of multiple seamounts. J. Phys. Oceanogr., 21, 1122−1138, https://doi.org/10.1175/1520-0485(1991)021<1122:CDITVO>2.0.CO;2.
Zhou, X.-H., D.-P. Wang, and D. K. Chen, 2015: Global wavenumber spectrum with corrections for altimeter high-frequency noise. J. Phys. Oceanogr., 45, 495−503, https://doi.org/10.1175/JPO-D-14-0144.1.