Agosta, C., C. Amory, C. Kittel, A. Orsi, V. Favier, and Coauthors, 2019: Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979−2015) and identification of dominant processes. The Cryosphere, 13(1), 281−296, https://doi.org/10.5194/tc-13-281-2019.
Berrisford, P., P. Kallberg, S. Kobayashi, D. Dee, S. Uppala, A. J. Simmons, P. Poli, and H. Sato, 2011: Atmospheric conservation properties in ERA-Interim. Quart. J. Roy. Meteor. Soc., 137, 1381−1399, https://doi.org/10.1002/qj.864.
Bozkurt, D., R. Rondanelli, J. Marín, and R. Garreaud, 2018: Foehn event triggered by an atmospheric river underlies record-setting temperature along continental Antarctica. J. Geophys. Res. Atmos., 123, 3871−3892, https://doi.org/10.1002/2017JD027796.
Bromwich, D. H., K. M. Hines, and L.-S. Bai, 2009: Development and testing of Polar Weather Research and Forecasting model: 2. Arctic Ocean. J. Geophys. Res., 114, D08122, https://doi.org/10.1029/2008JD010300.
Bromwich, D. H., J. P Nicolas, A. J. Monaghan, M. A. Lazzara, L. M. Keller, G. A. Weidner, and A. B. Wilson, 2013a: Central West Antarctica among the most rapidly warming regions on Earth. Nat. Geosci., 6, 139−145, https://doi.org/10.1038/ngeo1671.
Bromwich, D. H., F. O. Otieno, K. M. Hines, K. W. Manning, and E. Shilo, 2013b: Comprehensive evaluation of polar weather research and forecasting performance in the Antarctic. J. Geophys. Res., 118, 274−292, https://doi.org/10.1029/2012JD018139.
Bromwich, D. H., J. P. Nicolas, A. J. Monaghan, M. A. Lazzara, L. M. Keller, G. A. Weidner, and A. B. Wilson, 2014: Corrigendum: Central West Antarctica among the most rapidly warming regions on Earth. Nat. Geosci., 7, 76, https://doi.org/10.1038/ngeo2016.
Cape, R. M., M. Vernet, M. Kahru, and G. Spreen, 2014: Polynya dynamics drive primary production in the Larsen A and B embayments following ice shelf collapse. J. Geophys. Res. Oceans, 119, 572−594, https://doi.org/10.1002/2013JC009441.
Cape, M. R., M. Vernet, P. Skvarca, S. Marinsek, M. Scambos, and E. Domack, 2015: Foehn winds link climate-driven warming to ice shelf evolution in Antarctica. J. Geophys. Res. Atmospheres, 120, 11037−11057, https://doi.org/10.1002/2015JD023465.
Carrasco, J. F., 2013: Decadal changes in the near-surface air temperature in the western side of the Antarctic Peninsula. Atmospheric and Climate Sciences, 3(3), 275−281, https://doi.org/10.4236/acs.2013.33029.
Carrasco, J. F., 2018: Contextualising the 1997 warm event observed at Patriot Hills in the interior of West Antarctica. Polar Research, 37, 1−12, https://doi.org/10.1080/17518369.2018.1547041.
Clem, K. R., B. R. Lintner, A. J. Broccoli, and J. R. Miller, 2019: Role of the South Pacific convergence zone in West Antarctic decadal climate variability. Geophys. Res. Lett., https:/doi.org/10.1029/2019GL082108.
Comiso, J. C., 2000: Bootstrap sea ice concentrations from NIMBUS-7 SMMR and DMSP SMM/I-SSM/S, Version 2, Subset used: January and July 2013. NASA DAAC at the National Snow and Ice Data Center, Boulder, Colorado.
Cook A. J., and D. G. Vaughan, 2010: Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere, 4, 77−98, https://doi.org/10.5194/tc-4-77-2010.
Copernicus Climate Change Service (C3S), 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS).[Available online from https://cds.climate.copernicus.eu/cdsapp#!/home]
Datta, R. T., M. Tedesco, X. Fettweis, C. Agosta, S. Lhermitte, J. T. M. Lenaerts, and N. Wever, 2019: The effect of Foehn-induced surface melt on firn evolution over the northeast Antarctic Peninsula. Geophys. Res. Lett., 46, https://doi.org/10.1029/2018GL080845.
Deb, P., A. Orr, J. S. Hosking, T. Phillips, J. Turner, D. Bannister, J. O. Pope, and S. Colwell, 2016: An assessment of the Polar Weather Research and Forecasting (WRF) model representation of near-surface meteorological variables over West Antarctica. J. Geophys. Res. Atmos., 121, 1532−1548, https://doi.org/10.1002/2015JD024037.
Deb, P., A. Orr, D. H. Bromwich, J. P. Nicolas, J. Turner, and J. S. Hosking, 2018: Summer drivers of atmospheric variability affecting ice shelf thinning in the Amundsen Sea Embayment, West Antarctica. Geophys. Res. Lett., 45, 4124−4133, https://doi.org/10.1029/2018GL077092.
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Royal Meteorol. Soc., 137(656), 553−597, https://doi.org/10.1002/qj.828.
Elvidge, A. D., I. A. Renfrew, J. C. King, A. Orr, T. A. Lachlan-Cope, M. Weeks, and Coauthors, 2015: Foehn jets over the Larsen C Ice Shelf, Antarctica. Quart. J. Royal Meteorol. Soc., 141, 698−713, https://doi.org/10.1002/qj.2382.
Fraiman, R., A. Justel, R. Liu, and P. Llop, 2014: Detecting trends in time series of functional data: A study of Antarctic climate change. The Canadian Journal of Statistics, 42, 1−13, https://doi.org/10.1002/cjs.11197.
Giorgi, F., C. Jones, and G. R. Asrar, 2009: Addressing climate information needs at the regional level: the CORDEX framework. WMO Bulletin, 58, 175−183.
Gonzalez, S., S. Vasallo, C. Recio-Blitz, J. A. Guijarro, and J. Riesgo, 2018: Atmospheric pattern over the Antarctic Peninsula. J. Climate, 31, 3597−3607, https://doi.org/10.1175/JCLI-D-17-0598.1.
Gonzalez, S., and D. Fortuny, 2018: How robust are the Antarctic Peninsula trends? Antarctic Science, 30, 322−328, https://doi.org/10.1017/S0954102018000251.
Gossart, A., S. Helsen, J. Lenaerts, S. Vanden Broucke, N. van Lipzig, and N. Souverijns, 2019: An evaluation of surface climatology in state-of-the-art reanalyses over the Antarctic Ice Sheet. J. Climate, https://doi.org/10.1175/JCLI-D-19-0030.1.
Grell, G. A., and S. R. Freitas, 2013: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 13, 23845−23893, https://doi.org/10.5194/acpd-13-23845-2013.
Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter No. 147, 7.
Hines, K. M., and D. H. Bromwich, 2008: Development and testing of Polar WRF. Part I: Greenland ice sheet meteorology. Mon. Wea. Rev., 136, 1971−1989, https://doi.org/10.1175/2007MWR2112.1.
Hines, K. M., D. H. Bromwich, L. S. Bai, M. Barlage, and A. G. Slater, 2011: Development and testing of Polar WRF. Part III: Arctic land. J. Climate, 24, 26−48, https://doi.org/10.1175/2010JCLI3460.1.
Holland, P. R., T. J. Bracegirdle, P. Dutrieux, A. Jenkins, and E. J. Steig, 2019: West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing. Nat. Geosci., https://doi.org/10.1038/s41561-019-0420-9.
Hosking, J. S., A. Orr, G. J. Marshall, J. Turner, and T. Phillips, 2013: The influence of the Amundsen-Bellingshausen Seas low on the climate of West Antarctica and its representation in coupled climate model simulations. J. Climate, 26, 6633−6648, https://doi.org/10.1175/JCLI-D-12-00813.1.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.
Janjic, Z. I., 2002: Nonsingular Implementation of the Mellor−Yamada Level 2.5 Scheme in the NCEP Meso Model, NCEP Off. Note 437, Natl. Cent. Environ. Predict., Camp Springs, Md, 61 pp.
Jones, J. M., and Coauthors, 2016: Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat. Climate Change, 6, 917−926, https://doi.org/10.1038/nclimate3103.
Jones, M. E., D. H. Bromwich, J. P. Nicolas, J. Carrasco, E. Plavcová, X. Zou, and S.-H. Wang, 2019: Sixty years of widespread warming in the southern mid- and high-latitudes (1957−2016). J. Climate, 32, 6875−6898, https://doi.org/10.1175/JCLI-D-18-0565.1.
King, J. C., and J. Turner, 2009: Antarctic meteorology and climatology. Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/CBO9780511524967.
King, J. C., A. Gadian, A. Kirchgaessner, P. Kuipers Munneke, T. A. Lachlan-Cope, A. Orr, C. Reijmer, M. R. van den Broeke, J. M. van Wessem, and M. Weeks, 2015: Validation of the summertime surface energy budget of Larsen C Ice Shelf (Antarctica) as represented in three high-resolution atmospheric models. J. Geophys. Res.-Atmos., 120, 1335−1347, https://doi.org/10.1002/2014JD022604.
Lazzara, M. A., G. A. Weidner, L. M. Keller, J. E. Thom, and J. J. Cassano, 2012: Antarctic automatic weather station program: 30 years of polar observation. Bull. Amer. Meteorol. Soc., 93(10), 1519−1537, https://doi.org/10.1175/BAMS-D-11-00015.1.
Lenaerts, J. T. M., M. R. van den Broeke, W. J. van de Berg, E. van Meijgaard, and P. Kuipers Munneke, 2012: A new, high-resolution surface mass balance map of Antarctica (1979−2010) based on regional atmospheric climate modeling. Geophys. Res. Lett., 39, L04501, https://doi.org/10.1029/2011GL050713.
Listowski, C., and T. Lachlan-Cope, 2017: The microphysics of clouds over the Antarctic Peninsula−Part 2: Modelling aspects within Polar-WRF. Atmos. Chem. Phys., 17, 10195−10221, https://doi.org/10.5194/acp-17-10195-2017.
Marshall, G. J., A. Orr, N. P. M. van Lipzig, and J. C. King, 2006: The impact of a changing Southern Hemisphere annular mode on Antarctic Peninsula summer temperatures. J. Climate., 19(20), 5388−5404, https://doi.org/10.1175/JCLI3844.1.
Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Weather Rev., 137, 991−1007, https://doi.org/10.1175/2008MWR2556.1.
Nicolas, J. P., A. M. Vogelmann, R. C. Scott, A. B. Wilson, M. P. Cadeddu, D. H. Bromwich, and Coauthors, 2017: January 2016 extensive summer melt in West Antarctica favoured by strong El Ninño. Nat. Comm., 8, 15799, https://doi.org/10.1038/ncomms15799.
Niu, G. Y., Z. L. Yang, K. E. Mitchell, and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.
Oliva, M., F. Navarro, F. Hrbacek, A. Hernandez, D. Nyvlt, P. Pereira, and Coauthors, 2017: Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere. Sci. Tot. Environ., 580, 210−223, https://doi.org/10.1016/j.scitotenv.2016.12.030.
Powers, J. G., K. W. Manning, D. H. Bromwich, J. J. Cassano, and A. M. Cayette, 2012: A decade of Antarctic science support through AMPS. Bull. Amer. Meteor. Soc., 93, 1699−1712, https://doi.org/10.1175/BAMS-D-11-00186.1.
Raphael, M. N., and Coauthors, 2016: The Amundsen Sea low: Variability, change, and impact on Antarctic climate. Bull. Amer. Meteor. Soc., 97, 111−121, https://doi.org/10.1175/BAMS-D-14-00018.1.
Rignot, E., G. Casassa, P. Gogineni, W. Krabill, A. Rivera, and R. Thomas, 2004: Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B Ice Shelf. Geophys. Res. Lett., 31, L18401, https://doi.org/10.1029/2004GL020697.
Rondanelli, R., B. Hatchett, J. Rutllant, D. Bozkurt, and R. Garreaud, 2019: Strongest MJO on record triggers extreme Atacama rainfall and warmth in Antarctica. Geophys. Res. Lett., 46(6), 3482−3491, https://doi.org/10.1029/2018GL081475.
Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the Advanced Research WRF Version 3. NCAR Tech. Note, NCAR/TN-475 + STR, Nat. Cent. for Atmos. Res, Boulder, Colorado, 125 pp.
Steig, E. J., D. P. Schneider, S. D. Rutherford, M. E. Mann, J. C. Comiso, and D. T. Shindell, 2009: Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457, 459−462, https://doi.org/10.1038/nature07669.
Steinhoff, D. F., D. H. Bromwich, and A. J. Monaghan, 2014: Dynamics of the foehn mechanism in the McMurdo Dry Valleys of Antarctica from Polar WRF. Quart. J. Roy. Meteor. Soc., 139, 1615−1631, https://doi.org/10.1002/qj.2038.
Tetzner, D., L. Thomas, and C. Allen, 2019: A validation of ERA5 reanalysis data in the southern Antarctic Peninsula-Ellsworth Land region, and its implications for ice core studies. Geosciences, 9(289), https://doi.org/10.3390/geosciences9070289.
Turner, J., and Coauthors, 2004: The SCAR READER project: Toward a high-quality database of mean Antarctic meteorological observations. J. Climate, 17, 2890−2898, https://doi.org/10.1175/1520-0442(2004)017<2890:TSRPTA>2.0.CO;2.
Turner, J., H. Lu, I. White, J. C. King, T. Phillips, J. S. Hosking, J. S., and Coauthors, 2016: Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 535, 411−415, https://doi.org/10.1038/nature18645.
van Meijgaard, E., L. H. van Ulft, W. J. van de Berg, F. C. Bosvelt, B. J. J. M. van den Hurk, G. Lenderink, and A. P. Siebesma, 2008: The KNMI regional atmospheric model RACMO version 2.1. KNMI Tech. Rep. 302, 43 pp.[Available online at bibliotheek.knmi.nl/knmipubTR/TR302.pdf.]
van Wessem, J. M., C. H. Reijmer, M. Morlighem, J. Mouginot, E. Rignot, B. Medley, and Coauthors, 2014: Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model. J. Glaciol., 60, 761−770, https://doi.org/10.3189/2014JoG14J051.
van Wessem, J. M., C. H. Reijmer, W. J. van de Berg, M. R. van den Broeke, A. J. Cook, L. H. van Ulft, and E. van Meijgaard, 2015: Temperature and wind climate of the Antarctic Peninsula as simulated by a high-resolution regional atmospheric climate model. J. Climate, 28, 7306−7326, https://doi.org/10.1175/JCLI-D-15-0060.1.
Wilson, A. B., D. H. Bromwich, and K. M. Hines, 2012: Evaluation of Polar WRF forecasts on the Arctic System Reanalysis Domain: 2. Atmospheric hydrologic cycle. J. Geophys. Res., 117, D04107, https://doi.org/10.1029/2011JD016765.
Yang, Z. L., G. Y. Niu, K. E. Mitchell, F. Chen, M. B. Ek, M. Barlage, K. Manning, D. Niyogi, M. Tewari, and Y. L. Xia, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res., 116, D12110, https://doi.org/10.1029/2010JD015140.
Zhang, C., and J. Zhan, 2018: Modeling study of foehn wind events in Antarctic Peninsula with WRF forced by CCSM. J. Meteor. Res., 32(6), 909−922, https://doi.org/10.1007/s13351-018-8067-9.
Zou, X., D. H. Bromwich, J. P. Nicolas, A. Montenegro, and S. H. Wang, 2019: West Antarctic surface melt event of January 2016 facilitated by föhn warming. Quart. J. Royal Meteorol. Soc., 145(719), 687−704, https://doi.org/10.1002/qj.3460.