Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present). Journal of Hydrometeorology, 4, 1147−1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.
Bador, M., M. G. Donat, O. Geoffroy, and L. V. Alexander, 2018: Assessing the robustness of future extreme precipitation intensification in the CMIP5 ensemble. J. Climate, 31, 6505−6525, https://doi.org/10.1175/JCLI-D-17-0683.1.
Chen, H. P., 2013: Projected change in extreme rainfall events in China by the end of the 21st century using CMIP5 models. Chinese Science Bulletin, 58, 1462−1472, https://doi.org/10.1007/s11434-012-5612-2.
Chen, H. P., and J. Q. Sun, 2013: Projected change in East Asian summer monsoon precipitation under RCP scenario. Meteorol. Atmos. Phys., 121, 55−77, https://doi.org/10.1007/s00703-013-0257-5.
Chen, J. L., and R. H. Huang, 2008: Interannual and interdecadal variations of moisture transport by Asian summer monsoon and their association with droughts or floods in China. Chinese Journal of Geophysics, 51, 352−359, https://doi.org/10.3321/j.issn:0001-5733.2008.02.007. (in Chinese with English abstract
Ding, Y. H., and G. Q. Hu, 2003: A study on water vapor budget over China during the 1998 severe flood periods. Acta Meteorologica Sinica, 61, 129−145, https://doi.org/10.3321/j.issn:0577-6619.2003.02.001. (in Chinese with English abstract
Ding, Y. H., G. Y. Ren, Z. C. Zhao, Y. Xu, Y. Luo, Q. P. Li, and J. Zhang, 2007: Detection, causes and projection of climate change over China: An overview of recent progress. Adv. Atmos. Sci., 24, 954−971, https://doi.org/10.1007/s00376-007-0954-4.
Freychet, N., H. H. Hsu, C. Chou, and C. H. Wu, 2015: Asian summer monsoon in CMIP5 projections: A link between the change in extreme precipitation and monsoon dynamics. J. Climate, 28, 1477−1493, https://doi.org/10.1175/JCLI-D-14-00449.1.
Fu, Y. H., 2013: The projected temporal evolution in the interannual variability of East Asian summer rainfall by CMIP3 coupled models. Science China Earth Sciences, 56, 1434−1446, https://doi.org/10.1007/s11430-012-4430-3.
Fu, Y. H., 2015: The relationship between the interdecadal variation of summer precipitation and its interannual variability over the middle and lower reaches of the Yangtze River Valley. Atmos. Ocean. Sci. Lett., 8, 127−133, https://doi.org/10.3878/AOSL20140098.
Fu, Y. H., Z. D. Lin, and D. Guo, 2020: Improvement of the simulation of the summer East Asian westerly jet from CMIP5 to CMIP6. Atmos. Ocean. Sci. Lett., 13, 550−558, https://doi.org/10.1080/16742834.2020.1746175.
Fu, Y. H., Z. D. Lin, and T. Wang, 2021: Simulated relationship between wintertime ENSO and East Asian summer rainfall: From CMIP3 to CMIP6. Adv. Atmos. Sci., 38, 221−236, https://doi.org/10.1007/s00376-020-0147-y.
Huang, R. H., Y. H. Xu, P. F. Wang, and L. T. Zhou, 1998: The features of the catastrophic flood over the Changjiang River basin during the summer of 1998 and cause exploration. Climatic and Environmental Research, 3, 300−313, https://doi.org/10.3878/j.issn.1006-9585.1998.04.02. (in Chinese with English abstract
Jiang, D. B., and Y. H. Fu, 2012: Climate change over China with a 2°C global warming. Chinese Journal of Atmospheric Sciences, 36, 234−246, https://doi.org/10.3878/j.issn.1006-9895.2011.11074. (in Chinese with English abstract
Jiang, D. B., and Z. P. Tian, 2013: East Asian monsoon change for the 21st century: Results of CMIP3 and CMIP5 models. Chinese Science Bulletin, 58, 1427−1435, https://doi.org/10.1007/s11434-012-5533-0.
Jiang, D. B., D. Hu, Z. P. Tian, and X. M. Lang, 2020: Differences between CMIP6 and CMIP5 models in simulating climate over China and the East Asian monsoon. Adv. Atmos. Sci., 37, 1102−1118, https://doi.org/10.1007/s00376-020-2034-y.
Jiang, T., Z. W. Kundzewicz, and B. D. Su, 2008: Changes in monthly precipitation and flood hazard in the Yangtze River Basin, China. International Journal of Climatology, 28, 1471−1481, https://doi.org/10.1002/joc.1635.
Jiang, Z. H., J. Pu, H. Yang, and W. Ren, 2017: Diagnostic analysis of water vapor transport process during the catastrophic flood period over Yangtze River Basin in 1998. Transactions of Atmospheric Sciences, 40, 289−298, https://doi.org/10.13878/j.cnki.dqkxxb.201503250113. (in Chinese with English abstract
Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437−472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
Kamizawa, N., and H. G. Takahashi, 2018: Projected trends in interannual variation in summer seasonal precipitation and its extremes over the tropical Asian monsoon regions in CMIP5. J. Climate, 31, 8421−8439, https://doi.org/10.1175/JCLI-D-17-0685.1.
Kim, Y. H., S. K. Min, X. B. Zhang, J. Sillmann, and M. Sandstad, 2020: Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Weather and Climate Extremes, 29, 100269, https://doi.org/10.1016/j.wace.2020.100269.
Kitoh, A., 2017: The Asian monsoon and its future change in climate models: A review. J. Meteor. Soc. Japan, 95, 7−33, https://doi.org/10.2151/jmsj.2017-002.
Kripalani, R. H., J. H. Oh, and H. S. Chaudhari, 2007: Response of the East Asian summer monsoon to doubled atmospheric CO2: Coupled climate model simulations and projections under IPCC AR4. Theor. Appl. Climatol., 87, 1−28, https://doi.org/10.1007/s00704-006-0238-4.
Li, W., Z. H. Jiang, J. J. Xu, and L. Li, 2016: Extreme precipitation indices over China in CMIP5 models. Part II: Probabilistic projection. J. Climate, 29, 8989−9004, https://doi.org/10.1175/JCLI-D-16-0377.1.
Li, X. Q., M. F. Ting, C. H. Li, and N. Henderson, 2015: Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models. J. Climate, 28, 4107−4125, https://doi.org/10.1175/JCLI-D-14-00559.1.
Li, X. Y., and R. Y. Lu, 2018: Subseasonal change in the seesaw pattern of precipitation between the Yangtze River basin and the tropical western North Pacific during summer. Adv. Atmos. Sci., 35, 1231−1242, https://doi.org/10.1007/s00376-018-7304-6.
Liu, R., S. C. Liu, C. J. Shiu, J. Li, and Y. H. Zhang, 2016: Trends of regional precipitation and their control mechanisms during 1979–2013. Adv. Atmos. Sci., 33, 164−174, https://doi.org/10.1007/s00376-015-5117-4.
Lu, R., Y. Li, and B. Dong, 2007: East Asian precipitation increase under the global warming. Journal of the Korean Meteorological Society, 43, 267−272.
Lu, R. Y., and Y. H. Fu, 2010: Intensification of East Asian summer rainfall interannual variability in the twenty-first century simulated by 12 CMIP3 coupled models. J. Climate, 23, 3316−3331, https://doi.org/10.1175/2009JCLI3130.1.
Ma, S. M., and Coauthors, 2017: Detectable anthropogenic shift toward heavy precipitation over eastern China. J. Climate, 30, 1381−1396, https://doi.org/10.1175/JCLI-D-16-0311.1.
Marelle, L., G. Myhre, Ø. Hodnebrog, J. Sillmann, and B. H. Samset, 2018: The changing seasonality of extreme daily precipitation. Geophys. Res. Lett., 45, 11 352−11 360, https://doi.org/10.1029/2018GL079567.
Ren, Y. J., L. C. Song, Y. Xiao, and L. M. Du, 2019: Underestimated interannual variability of East Asian summer rainfall under climate change. Theor. Appl. Climatol., 135, 911−920, https://doi.org/10.1007/s00704-018-2398-4.
Seo, K. H., and J. Ok, 2013: Assessing future changes in the East Asian summer monsoon using CMIP3 models: Results from the best model ensemble. J. Climate, 26, 1807−1817, https://doi.org/10.1175/JCLI-D-12-00109.1.
Seo, K. H., J. Ok, J. H. Son, and D. H. Cha, 2013: Assessing future changes in the East Asian summer monsoon using CMIP5 coupled models. J. Climate, 26, 7662−7675, https://doi.org/10.1175/JCLI-D-12-00694.1.
Sun, B., H. J. Wang, B. T. Zhou, H. X. Li, and B. Y. Zhu, 2020: A review on the interannual and interdecadal variations of water vapor transport over China during past decades. Advances in Water Science, 31, 644−653, https://doi.org/10.14042/j.cnki.32.1309.2020.05.002. (in Chinese with English abstract
Sun, Y., and Y. H. Ding, 2010: A projection of future changes in summer precipitation and monsoon in East Asia. Science China Earth Sciences, 53, 284−300, https://doi.org/10.1007/s11430-009-0123-y.
Tao, S. Y., Q. Y. Zhang, and S. L. Zhang, 1998: The great floods in the Changjiang River Valley in 1998. Climatic and Environmental Research, 3, 290−299, https://doi.org/10.3878/j.issn.1006-9585.1998.04.01. (in Chinese with English abstract
Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 7183−7192, https://doi.org/10.1029/2000JD900719.
Wang, T., J. P. Miao, J. Q. Sun, and Y. H. Fu, 2018: Intensified East Asian summer monsoon and associated precipitation mode shift under the 1.5 ºC global warming target. Advances in Climate Change Research, 9, 102−111, https://doi.org/10.1016/j.accre.2017.12.002.
Wang, X. X., D. B. Jiang, and X. M. Lang, 2017: Future extreme climate changes linked to global warming intensity. Science Bulletin, 62, 1673−1680, https://doi.org/10.1016/j.scib.2017.11.004.
Xu, Z. F., Z. L. Hou, Y. Han, and W. D. Guo, 2016: A diagram for evaluating multiple aspects of model performance in simulating vector fields. Geoscientific Model Development, 9, 4365−4380, https://doi.org/10.5194/gmd-9-4365-2016.
Ye, H., and R. Y. Lu, 2011: Subseasonal variation in ENSO-related East Asian rainfall anomalies during summer and its role in weakening the relationship between the ENSO and summer rainfall in eastern China since the late 1970. J. Climate, 24, 2271−2284, https://doi.org/10.1175/2010JCLI3747.1.
Zhan, W., X. G. He, J. Sheffield, and E. F. Wood, 2020: Projected seasonal changes in large-scale global precipitation and temperature extremes based on the CMIP5 ensemble. J. Climate, 33, 5651−5671, https://doi.org/10.1175/JCLI-D-19-0311.1.
Zhang, S. L., S. Y. Tao, Q. Y. Zhang, and X. L. Zhang, 2001: Meteorological and hydrological characteristics of severe flooding in china during the summer of 1998. Quarterly Journal of Applied Meteorology, 12, 442−457, https://doi.org/10.3969/j.issn.1001-7313.2001.04.007. (in Chinese with English abstract
Zhao, A. D., D. S. Stevenson, and M. A. Bollasina, 2019: The role of anthropogenic aerosols in future precipitation extremes over the Asian Monsoon Region. Climate Dyn., 52, 6257−6278, https://doi.org/10.1007/s00382-018-4514-7.
Zhou, B. T., Q. Z. H. Wen, Y. Xu, L. C. Song, and X. B. Zhang, 2014: Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles. J. Climate, 27, 6591−6611, https://doi.org/10.1175/JCLI-D-13-00761.1.
Zhou, T. J., and R. C. Yu, 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 110, D08104, https://doi.org/10.1029/2004JD005413.
Zhu, C. W., B. Q. Liu, Z. Y. Zuo, N. M. Yuan, and G. Liu, 2019: Recent advances on sub-seasonal variability of East Asian summer monsoon. Journal of Applied Meteorological Science, 30, 401−415, https://doi.org/10.11898/1001-7313.20190402. (in Chinese with English abstract
Zhu, H. H., Z. H. Jiang, J. LI, W. Li, C. X. Sun, and L. Li, 2020: Does CMIP6 inspire more confidence in simulating climate extremes over China? Adv. Atmos. Sci., 37, 1119−1132, https://doi.org/10.1007/s00376-020-9289-1.