Baldocchi, D. D., 2020: How eddy covariance flux measurements have contributed to our understanding of Global Change Biology. Global Change Biol., 26, 242−260, https://doi.org/10.1111/gcb.14807.
Biederman, J. A., and Coauthors, 2016: Terrestrial carbon balance in a drier world: The effects of water availability in southwestern North America. Global Change Biol., 22, 1867−1879, https://doi.org/10.1111/gcb.13222.
Bouchet, R. J., 1963: Evapotranspiration réelle et potentielle, signification climatique. Int. Assoc. Sci. Hydrol., 62, 134−142.
Bowen, I. S., 1926: The ratio of heat losses by conduction and by evaporation from any water surface. Phys. Rev., 27, 779−787, https://doi.org/10.1103/PhysRev.27.779.
Brutsaert, W., 1982: Evaporation into the Atmosphere: Theory, History and Applications. Springer, 302 pp, https://doi.org/10.1007/978-94-017-1497-6.
Brutsaert, W., 2015: A generalized complementary principle with physical constraints for land- surface evaporation. Water Resour. Res., 51, 8087−8093, https://doi.org/10.1002/2015WR017720.
Brutsaert, W., L. Cheng, and L. Zhang, 2020: Spatial distribution of global landscape evaporation in the early twenty-first century by means of a generalized complementary approach. J. Hydromet., 21, 287−298, https://doi.org/10.1175/JHM-D-19-0208.1.
Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface‐hydrology model with the Penn State‐NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129(4), 569−585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.
Condon, L. E., A. L. Atchley, and R. M. Maxwell, 2020: Evapotranspiration depletes groundwater under warming over the contiguous United States. Nature Comm., 11, 873, https://doi.org/10.1038/s41467-020-14688-0.
Crago, R., J. Szilagyi, R. Qualls, and J. Huntington, 2016: Rescaling the complementary relationship for land surface evaporation. Water Resour. Res., 52, 8461−8471, https://doi.org/10.1002/2016WR019753.
Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteorol., 33, 140−158, https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.
de Vries, D. A., 1959: The influence of irrigation on the energy balance and the climate near the ground. J. Meteorol., 16, 256−270, https://doi.org/10.1175/1520-0469(1959)016<0256:TIOIOT>2.0.CO;2.
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteorol. Soc., 137(656), 553−597, https://doi.org/10.1002/qj.828.
Fang, H. L., F. Baret, S. Plummer, and G. Schaepman-Strub, 2019: An overview of global leaf area Index (LAI): Methods, products, validation, and applications. Rev. Geophys., 57, 739−799, https://doi.org/10.1029/2018rg000608.
Feng, X. M., and Coauthors, 2016: Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change, 6, 1019−1022, https://doi.org/10.1038/nclimate3092.
Fisher, J. B., and Coauthors, 2017: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res., 53, 2618−2626, https://doi.org/10.1002/2016wr020175.
Gutman, G., and A. Ignatov, 1998: The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens., 19, 1533−1543, https://doi.org/10.1080/014311698215333.
Jung, M., and Coauthors, 2011: Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res., 116, G00J07, https://doi.org/10.1029/2010jg001566.
Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP‐DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteorol. Soc., 83(11), 1631−1644, https://doi.org/10.1175/BAMS-83-11-1631.
Koster, R. D., and M. J. Suarez, 1996: Energy and water balance calculations in the Mosaic LSM. NASA Technical Memorandum, 104606.
Leuning, R., Y. Q. Zhang, A. Rajaud, H. Cleugh, and K. Tu, 2008: A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation. Water Resour. Res., 44, W10419, https://doi.org/10.1029/2007WR006562.
Li, J. D., F. Chen, G. Zhang, M. Barlage, Y. J. Gan, Y. F. Xin, and C. Wang, 2018: Impacts of land cover and soil texture uncertainty on land model simulations over the Central Tibetan Plateau. J. Adv. Model. Earth Syst., 10, 2121−2146, https://doi.org/10.1029/2018MS001377.
Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99(D7), 14415−14428, https://doi.org/10.1029/94JD00483.
Liu, W. B., L. Wang, J. Zhou, Y. Z. Li, F. B. Sun, G. B. Fu, X. P. Li, and Y.-F. Sang, 2016: A worldwide evaluation of basin-scale evapotranspiration estimates against the water balance method. J. Hydrol., 538, 82−95, https://doi.org/10.1016/j.jhydrol.2016.04.006.
Ma, N., and J. Szilagyi, 2019: The CR of evaporation: A calibration-free diagnostic and benchmarking tool for large-scale terrestrial evapotranspiration modeling. Water Resour. Res., 55(8), 7246−7274, https://doi.org/10.1029/2019WR024867.
Ma, N., G.-Y. Niu, Y. L. Xia, X. T. Cai, Y. S. Zhang, Y. M. Ma, and Y. H. Fang, 2017: A systematic evaluation of Noah-MP in simulating land-atmosphere energy, water, and carbon exchanges over the continental United States. J. Geophys. Res., 122(22), 12245−12268, https://doi.org/10.1002/2017JD027597.
Ma, N., J. Szilagyi, Y. S. Zhang, and W. B. Liu, 2019: Complementary-relationship-based modeling of terrestrial evapotranspiration across China during 1982-2012: Validations and spatiotemporal analyses. J. Geophys. Res., 124, 4326−4351, https://doi.org/10.1029/2018JD029850.
Martens, B., and Coauthors, 2017: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev., 10(5), 1903−1925, https://doi.org/10.5194/gmd-10-1903-2017.
Mesinger, F., and Coauthors, 2006: North American regional reanalysis. Bull. Amer. Meteorol. Soc., 87, 343−360, https://doi.org/10.1175/BAMS-87-3-343.
Miralles, D. G., T. R. H. Holmes, R. A. M. De Jeu, J. H. Gash, A. G. C. A. Meesters, and A. J. Dolman, 2011: Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci., 15(2), 453−469, https://doi.org/10.5194/hess-15-453-2011.
Morton, F. I., 1983: Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. J. Hydrol., 66, 1−76, https://doi.org/10.1016/0022-1694(83)90177-4.
Mueller, B., and Coauthors, 2011: Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett., 38, L06402, https://doi.org/10.1029/2010gl046230.
Pendergrass, A. G., and Coauthors, 2020: Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Clim. Change, 10, 191−199, https://doi.org/10.1038/s41558-020-0709-0.
Penman, H. L., 1948: Natural evaporation from open water, bare soil and grass. Proc. Royal Soc. A: Math. Phys. Engin. Sci., 193, 120−145, https://doi.org/10.1098/rspa.1948.0037.
Priestley, C. H. B., and R. J. Taylor, 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev., 100(2), 81−92, https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2.
Senay, G. B., S. Leake, P. L. Nagler, G. Artan, J. Dickinson, J. T. Cordova, and E. P. Glenn, 2011: Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods. Hydrol. Process., 25(26), 4037−4049, https://doi.org/10.1002/hyp.8379.
Seneviratne, S. I., D. Lüthi, M. Litschi, and C. Schär, 2006: Land-atmosphere coupling and climate change in Europe. Nature, 443, 205−209, https://doi.org/10.1038/nature05095.
Slatyer, R. O., and I. C. Mcllroy, 1961: Practical Microclimatology. CSIRO, 310 pp.
Szilagyi, J., 2014: Temperature corrections in the Priestley-Taylor equation of evaporation. J. Hydrol., 519, 455−464, https://doi.org/10.1016/j.jhydrol.2014.07.040.
Szilagyi, J., 2018a: Anthropogenic hydrological cycle disturbance at a regional scale: State-wide evapotranspiration trends (1979−2015) across Nebraska, USA. J. Hydrol., 557, 600−612, https://doi.org/10.1016/j.jhydrol.2017.12.062.
Szilagyi, J., 2018b: A calibration-free, robust estimation of monthly land surface evapotranspiration rates for continental-scale hydrology. Hydrol. Res., 49(3), 648−657, https://doi.org/10.2166/nh.2017.078.
Szilagyi, J., and J. Jozsa, 2008: New findings about the complementary relationship-based evaporation estimation methods. J. Hydrol., 354, 171−186, https://doi.org/10.1016/j.jhydrol.2008.03.008.
Szilagyi, J., and J. Jozsa, 2009: Analytical solution of the coupled 2-D turbulent heat and vapor transport equations and the complementary relationship of evaporation. J. Hydrol., 372, 61−67, https://doi.org/10.1016/j.jhydrol.2009.03.035.
Szilagyi, J., and A. Schepers, 2014: Coupled heat and vapor transport: The thermostat effect of a freely evaporating land surface. Geophys. Res. Lett., 41, 435−441, https://doi.org/10.1002/2013GL058979.
Szilagyi, J., and J. Jozsa, 2018: Evapotranspiration trends (1979−2015) in the Central Valley of California, USA: Contrasting tendencies during 1981−2007. Water Resour. Res., 54, 5620−5635, https://doi.org/10.1029/2018WR022704.
Szilagyi, J., R. Crago, and R. Qualls, 2017: A calibration-free formulation of the complementary relationship of evaporation for continental-scale hydrology. J. Geophys. Res., 122, 264−278, https://doi.org/10.1002/2016jd025611.
Ukkola, A. M., M. G. De Kauwe, A. J. Pitman, M. J. Best, G. Abramowitz, V. Haverd, M. Decker, and N. Haughton, 2016: Land surface models systematically overestimate the intensity, duration and magnitude of seasonal-scale evaporative droughts. Environ. Res. Lett., 11(10), 104012, https://doi.org/10.1088/1748-9326/11/10/104012.
Velpuri, N. M., G. B. Senay, R. K. Singh, S. Bohms, and J. P. Verdin, 2013: A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET. Remote Sens. Environ., 139, 35−49, https://doi.org/10.1016/j.rse.2013.07.013.
Vinukollu, R. K., E. F. Wood, C. R. Ferguson, and J. B. Fisher, 2011: Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sens. Environ., 115, 801−823, https://doi.org/10.1016/j.rse.2010.11.006.
Wang, K. C., and R. E. Dickinson, 2012: A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys., 50, RG2005, https://doi.org/10.1029/2011rg000373.
Xia, Y. L., and D. Coauthors, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2(NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, https://doi.org/10.1029/2011jd016048.
Zhang, Y. Q., F. H. S. Chiew, J. Peña-Arancibia, F. B. Sun, H. X. Li, and R. Leuning, 2017: Global variation of transpiration and soil evaporation and the role of their major climate drivers. J. Geophys. Res., 122, 6868−6881, https://doi.org/10.1002/2017JD027025.
Zheng, H., and Z.-L. Yang, 2016: Effects of soil-type datasets on regional terrestrial water cycle simulations under different climatic regimes. J. Geophys. Res., 121, 14387−14402, https://doi.org/10.1002/2016JD025187.