Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 491 pp.
Ayarzagüena, B., U. Langematz, S. Meul, S. Oberländer, J. Abalichin, and A. Kubin, 2013: The role of climate change and ozone recovery for the future timing of major stratospheric warmings. Geophys. Res. Lett., 40(10), 2460−2465, https://doi.org/10.1002/grl.50477.
Baldwin, M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104(D24), 30937−30946, https://doi.org/10.1029/1999jd900445.
Baldwin, M. P., D. B. Stephenson, D. W. J. Thompson, T. J. Dunkerton, A. J. Charlton, and A. O'Neill, 2003: Stratospheric memory and skill of extended-range weather forecasts. Science, 301(5633), 636−640, https://doi.org/10.1126/science.1087143.
Butchart, N., and Coauthors, 2011: Multimodel climate and variability of the stratosphere. J. Geophys. Res., 116(D5), D05102, https://doi.org/10.1029/2010jd014995.
Butler, A. H., D. J. Seidel, S. C. Hardiman, N. Butchart, T. Birner, and A. Match, 2015: Defining sudden stratospheric warmings. Bull. Amer. Meteor. Soc., 96(11), 1913−1928, https://doi.org/10.1175/bams-d-13-00173.1.
Butler, A. H., J. P. Sjoberg, D. J. Seidel, and K. H. Rosenlof, 2017: A sudden stratospheric warming compendium. Earth System Science Data, 9(1), 63−76, https://doi.org/10.5194/essd-9-63-2017.
Cai, M., and R. C. Ren, 2007: Meridional and downward propagation of atmospheric circulation anomalies. Part I: Northern Hemisphere cold season variability. J. Atmos. Sci., 64(6), 1880−1901, https://doi.org/10.1175/jas3922.1.
Cai, Z. L., K. Wei, L. Y. Xu, X. Q. Lan, W. Chen, and D. Nath, 2017: The influences of the model configuration on the simulation of stratospheric Northern-Hemisphere polar vortex in the CMIP5 models. Advances in Meteorology, 2017, 7326759, https://doi.org/10.1155/2017/7326759.
Cao, C., Y. H. Chen, J. Rao, S. M. Liu, S. Y. Li, M. H. Ma, and Y. B. Wang, 2019: Statistical characteristics of major sudden stratospheric warming events in CESM1-WACCM: A comparison with the JRA55 and NCEP/NCAR reanalyses. Atmosphere, 10(9), 519, https://doi.org/10.3390/atmos10090519.
Cao, J., and Coauthors, 2018: The NUIST Earth System Model (NESM) version 3: Description and preliminary evaluation. Geoscientific Model Development, 11(7), 2975−2993, https://doi.org/10.5194/gmd-11-2975-2018.
Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20(3), 449−469, https://doi.org/10.1175/jcli3996.1.
Charlton, A. J., and Coauthors, 2007: A new look at stratospheric sudden warmings. Part II: Evaluation of numerical model simulations. J. Climate, 20(3), 470−488, https://doi.org/10.1175/jcli3994.1.
Charlton-Perez, A. J., and Coauthors, 2013: On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J. Geophys. Res., 118(6), 2494−2505, https://doi.org/10.1002/jgrd.50125.
Dai, Y., and B. K. Tan, 2016: The western Pacific pattern precursor of major stratospheric sudden warmings and the ENSO modulation. Environmental Research Letters, 11(12), 124032, https://doi.org/10.1088/1748-9326/aa538a.
de la Cámara, A., T. Birner, and J. R. Albers, 2019: Are sudden stratospheric warmings preceded by anomalous tropospheric wave activity? J. Climate, 32(21), 7173−7189, https://doi.org/10.1175/jcli-d-19-0269.1.
Domeisen, D. I. V., and Coauthors, 2020: The role of the stratosphere in subseasonal to seasonal prediction: 2. Predictability arising from stratosphere-troposphere coupling. J. Geophys. Res., 125(2), e2019jd030923, https://doi.org/10.1029/2019jd030923.
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937−1958, https://doi.org/10.5194/gmd-9-1937-2016.
Garfinkel, C. I., D. L. Hartmann, and F. Sassi, 2010: Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J. Climate, 23(12), 3282−3299, https://doi.org/10.1175/2010jcli3010.1.
Gong, H. N., L. Wang, W. Chen, R. G. Wu, W. Zhou, L. Liu, D. Nath, and X. Q. Lan, 2019: Diversity of the wintertime Arctic Oscillation pattern among CMIP5 models: Role of the stratospheric polar vortex. J. Climate, 32(16), 5235−5250, https://doi.org/10.1175/jcli-d-18-0603.1.
He, B., and Coauthors, 2019: CAS FGOALS-f3-L model datasets for CMIP6 historical atmospheric model intercomparison project simulation. Adv. Atmos. Sci., 36(8), 771−778, https://doi.org/10.1007/s00376-019-9027-8.
Hu, J. G., R. C. Ren, and H. M. Xu, 2014: Occurrence of winter stratospheric sudden warming events and the seasonal timing of spring stratospheric final warming. J. Atmos. Sci., 71(7), 2319−2334, https://doi.org/10.1175/jas-d-13-0349.1.
Hu, J. G., T. Li, H. M. Xu, and S. Y. Yang, 2017: Lessened response of boreal winter stratospheric polar vortex to El Niño in recent decades. Climate Dyn., 49(1−2), 263−278, https://doi.org/10.1007/s00382-016-3340-z.
Karpechko, A. Y., A. Charlton-Perez, M. Balmaseda, N. Tyrrell, and F. Vitart, 2018: Predicting sudden stratospheric warming 2018 and its climate impacts with a multimodel ensemble. Geophys. Res. Lett., 45(24), 13538−13546, https://doi.org/10.1029/2018gl081091.
Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93(1), 5−48, https://doi.org/10.2151/jmsj.2015-001.
Li, L. J., and Coauthors, 2020: The GAMIL3: Model description and evaluation. J. Geophys. Res., 125(15), e2020jd032574, https://doi.org/10.1029/2020jd032574.
Limpasuvan, V., D. W. J. Thompson, and D. L. Hartmann, 2004: The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Climate, 17(13), 2584−2596, https://doi.org/10.1175/1520-0442(2004)017<2584:tlcotn>2.0.co;2.
Liu, S. M., Y. H. Chen, J. Rao, C. Cao, S. Y. Li, M. H. Ma, and Y. B. Wang, 2019: Parallel comparison of major sudden stratospheric warming events in CESM1-WACCM and CESM2-WACCM. Atmosphere, 10(11), 679, https://doi.org/10.3390/atmos10110679.
Manzini, E., and Coauthors, 2014: Northern winter climate change: Assessment of uncertainty in CMIP5 projections related to stratosphere-troposphere coupling. J. Geophys. Res., 119(13), 7979−7998, https://doi.org/10.1002/2013jd021403.
Matthewman, N. J., J. G. Esler, A. J. Charlton-Perez, and L. M. Polvani, 2009: A new look at stratospheric sudden warmings. Part III: Polar vortex evolution and vertical structure. J. Climate, 22(6), 1566−1585, https://doi.org/10.1175/2008jcli2365.1.
Mitchell, D. M., A. J. Charlton-Perez, and L. J. Gray, 2011: Characterizing the variability and extremes of the stratospheric polar vortices using 2D moment analysis. J. Atmos. Sci., 68(6), 1194−1213, https://doi.org/10.1175/2010jas3555.1.
Mitchell, D. M., and Coauthors, 2012: The nature of Arctic polar vortices in chemistry-climate models. Quart. J. Roy. Meteor. Soc., 138(668), 1681−1691, https://doi.org/10.1002/qj.1909.
Mitchell, D. M., L. J. Gray, J. Anstey, M. P. Baldwin, and A. J. Charlton-Perez, 2013: The influence of stratospheric vortex displacements and splits on surface climate. J. Climate, 26(8), 2668−2682, https://doi.org/10.1175/jcli-d-12-00030.1.
Nakagawa, K. I., and K. Yamazaki, 2006: What kind of stratospheric sudden warming propagates to the troposphere? Geophys. Res. Lett., 33(4), L04801, https://doi.org/10.1029/2005gl024784.
Newman, P. A., and E. R. Nash, 2005: The unusual Southern Hemisphere stratosphere winter of 2002. J. Atmos. Sci., 62(3), 614−628, https://doi.org/10.1175/jas-3323.1.
O'Callaghan, A., M. Joshi, D. Stevens, and D. Mitchell, 2014: The effects of different sudden stratospheric warming types on the ocean. Geophys. Res. Lett., 41(21), 7739−7745, https://doi.org/10.1002/2014gl062179.
Osprey, S. M., L. J. Gray, S. C. Hardiman, N. Butchart, and T. J. Hinton, 2013: Stratospheric variability in twentieth-century CMIP5 simulations of the Met Office climate model: High top versus low top. J. Climate, 26(5), 1595−1606, https://doi.org/10.1175/jcli-d-12-00147.1.
Polvani, L. M., L. T. Sun, A. H. Butler, J. H. Richter, and C. Deser, 2017: Distinguishing stratospheric sudden warmings from ENSO as key drivers of wintertime climate variability over the North Atlantic and Eurasia. J. Climate, 30(6), 1959−1969, https://doi.org/10.1175/jcli-d-16-0277.1.
Rao, J., R. C. Ren, and Y. Yang, 2015: Parallel comparison of the northern winter stratospheric circulation in reanalysis and in CMIP5 models. Adv. Atmos. Sci., 32(7), 952−966, https://doi.org/10.1007/s00376-014-4192-2.
Rao, J., R. C. Ren, H. S. Chen, Y. Y. Yu, and Y. Zhou, 2018: The stratospheric sudden warming event in February 2018 and its prediction by a climate system model. J. Geophys. Res., 123(23), 13332−13345, https://doi.org/10.1029/2018jd028908.
Rao, J., R. C. Ren, H. S. Chen, X. W. Liu, Y. Y. Yu, and Y. Yang, 2019: Sub-seasonal to seasonal hindcasts of stratospheric sudden warming by BCC_CSM1.1(m): A comparison with ECMWF. Adv. Atmos. Sci., 36(5), 479−494, https://doi.org/10.1007/s00376-018-8165-8.
Rao, J., C. I. Garfinkel, and I. P. White, 2020a: Predicting the downward and surface influence of the February 2018 and January 2019 sudden stratospheric warming events in subseasonal to seasonal (S2S) models. J. Geophys. Res., 125(2), e2019JD031919, https://doi.org/10.1029/2019jd031919.
Rao, J., C. I. Garfinkel, and I. P. White, 2020b: Impact of the quasi-biennial oscillation on the northern winter stratospheric polar vortex in CMIP5/6 models. J. Climate, 33(11), 4787−4813, https://doi.org/10.1175/jcli-d-19-0663.1.
Rao, J., C. I. Garfinkel, and I. P. White, 2020c: How does the Quasi-Biennial Oscillation affect the boreal winter tropospheric circulation in CMIP5/6 models? J. Climate, 33(20), 8975−8996, https://doi.org/10.1175/jcli-d-20-0024.1.
Rao, J., C. I. Garfinkel, I. P. White, and C. Schwartz, 2020d: The Southern Hemisphere minor sudden stratospheric warming in September 2019 and its predictions in S2S models. J. Geophys. Res., 125(14), e2020JD032723, https://doi.org/10.1029/2020JD032723.
Ren, R. C., and M. Cai, 2007: Meridional and vertical out-of-phase relationships of temperature anomalies associated with the Northern Annular Mode variability. Geophys. Res. Lett., 34(7), L07704, https://doi.org/10.1029/2006gl028729.
Seviour, W. J. M., D. M. Mitchell, and L. J. Gray, 2013: A practical method to identify displaced and split stratospheric polar vortex events. Geophys. Res. Lett., 40(19), 5268−5273, https://doi.org/10.1002/grl.50927.
Seviour, W. J. M., L. J. Gray, and D. M. Mitchell, 2016: Stratospheric polar vortex splits and displacements in the high-top CMIP5 climate models. J. Geophys. Res., 121(4), 1400−1413, https://doi.org/10.1002/2015jd024178.
Shen, X. C., L. Wang, and S. Osprey, 2020a: The Southern Hemisphere sudden stratospheric warming of September 2019. Science Bulletin, 65(21), 1800−1802, https://doi.org/10.1016/j.scib.2020.06.028.
Shen, X. C., L. Wang, and S. Osprey, 2020b: Tropospheric forcing of the 2019 Antarctic sudden stratospheric warming. Geophys. Res. Lett., 47, e2020GL089343, https://doi.org/10.1029/2020GL089343.
Sigmond, M., J. F. Scinocca, V. V. Kharin, and T. G. Shepherd, 2013: Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat. Geosci., 6(2), 98−102, https://doi.org/10.1038/ngeo1698.
Taguchi, M., 2020: Verification of subseasonal-to-seasonal forecasts for major stratospheric sudden warmings in northern winter from 1998/99 to 2012/13. Adv. Atmos. Sci., 37(3), 250−258, https://doi.org/10.1007/s00376-019-9195-6.
Tripathi, O. P., and Coauthors, 2015: The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts. Quart. J. Roy. Meteor. Soc., 141(689), 987−1003, https://doi.org/10.1002/qj.2432.
Tripathi, O. P., and Coauthors, 2016: Examining the predictability of the stratospheric sudden warming of January 2013 using multiple NWP systems. Mon. Wea. Rev., 144(5), 1935−1960, https://doi.org/10.1175/mwr-d-15-0010.1.
Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109(4), 784−812, https://doi.org/10.1175/1520-0493(1981)109<0784:titghf>2.0.co;2.
Wang, L., and W. Chen, 2010: Downward Arctic Oscillation signal associated with moderate weak stratospheric polar vortex and the cold December 2009. Geophys. Res. Lett., 37, L09707, https://doi.org/10.1029/2010gl042659.
Wei, K., Z. L. Cai, W. Chen, and L. Y. Xu, 2018: The effect of a well-resolved stratosphere on East Asian winter climate. Climate Dyn., 51(11−12), 4015−4028, https://doi.org/10.1007/s00382-016-3419-6.
White, I., C. I. Garfinkel, E. P. Gerber, M. Jucker, V. Aquila, and L. D. Oman, 2019: The downward influence of sudden stratospheric warmings: Association with tropospheric precursors. J. Climate, 32(1), 85−108, https://doi.org/10.1175/jcli-d-18-0053.1.
Wu, T. W., and Coauthors, 2019: The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geoscientific Model Development, 12(4), 1573−1600, https://doi.org/10.5194/gmd-12-1573-2019.
Yu, Y. Y., M. Cai, R. C. Ren, and J. Rao, 2018: A closer look at the relationships between meridional mass circulation pulses in the stratosphere and cold air outbreak patterns in northern hemispheric winter. Climate Dyn., 51(7−8), 3125−3143, https://doi.org/10.1007/s00382-018-4069-7.
Zhang, R. H., W. S. Tian, J. K. Zhang, J. L. Huang, F. Xie, and M. Xu, 2019: The corresponding tropospheric environments during downward-extending and nondownward-extending events of stratospheric Northern Annular Mode anomalies. J. Climate, 32(6), 1857−1873, https://doi.org/10.1175/jcli-d-18-0574.1.
Zhou, T. J., and Coauthors, 2020: Development of climate and earth system models in China: Past achievements and new CMIP6 results. Journal of Meteorological Research, 34(1), 1−19, https://doi.org/10.1007/s13351-020-9164-0.