Abdillah, M. R., Y. Kannao, and T. Iwasaki, 2017: Tropical–extratropical interactions associated with east Asian cold air outbreaks. Part I: Interannual variability. J. Climate, 30, 2989−3007, https://doi.org/10.1175/JCLI-D-16-0152.1.
Baxter, I., and Coauthors, 2019: How tropical pacific surface cooling contributed to accelerated sea ice melt from 2007 to 2012 as ice is thinned by anthropogenic forcing. J. Climate, 32, 8583−8602, https://doi.org/10.1175/JCLI-D-18-0783.1.
Cai, M., Y. Y. Yu, Y. Deng, H. M. van den Dool, R. Ren, S. Saha, X. R. Wu, and J. Huang, 2016: Feeling the pulse of the stratosphere: An emerging opportunity for predicting continental-scale cold-air outbreaks 1 month in advance. Bull. Amer. Meteor. Soc., 97, 1475−1489, https://doi.org/10.1175/BAMS-D-14-00287.1.
Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449−469, https://doi.org/10.1175/JCLI3996.1.
Chen, S. F., R. G. Wu, W. Chen, and B. Yu, 2020: Influence of winter Arctic sea ice concentration change on the El Niño–Southern Oscillation in the following winter. Climate Dyn., 54(1−2), 741−757, https://doi.org/10.1007/s00382-019-05027-1.
Choi, H., B.-M. Kim, and W. Choi, 2019: Type classification of sudden stratospheric warming based on pre- and postwarming periods. J. Climate, 32, 2349−2367, https://doi.org/10.1175/jcli-d-18-0223.1.
Choi, H., J.-H. Kim, B.-M. Kim, and S.-J. Kim, 2021: Observational evidence of distinguishable weather patterns for three types of sudden stratospheric warming during northern winter. Frontiers in Earth Science, 9, 625868, https://doi.org/10.3389/feart.2021.625868.
Dai, G. K., C. X. Li, Z. Han, D. H. Luo, and Y. Yao, 2021: The nature and predictability of the East Asian extreme cold events of 2020/21. Adv. Atmos. Sci., in press,
Ding, Q. H., and Coauthors, 2017: Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nature Climate Change, 7, 289−295, https://doi.org/10.1038/nclimate3241.
Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39(6), L06801, https://doi.org/10.1029/2012gl051000.
Gallimore, R. G., and D. R. Johnson, 1981: A numerical diagnostic model of the zonally averaged circulation in isentropic coordinates. J. Atmos. Sci., 38, 1870−1890, https://doi.org/10.1175/1520-0469(1981)038<1870:ANDMOT>2.0.CO;2.
He, S. P., and H. J. Wang, 2013: Oscillating relationship between the East Asian winter monsoon and ENSO. J. Climate, 26(24), 9819−9838, https://doi.org/10.1175/jcli-d-13-00174.1.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049, https://doi.org/10.1002/qj.3803.
Hoerling, M. P., and A. Kumar, 1997: Why do North American climate anomalies differ from one El Niño event to another. . Geophys. Res. Lett., 24, 1059−1062, https://doi.org/10.1029/97GL00918.
Hu, C. D., S. Yang, Q. G. Wu, Z. N. Li, J. W. Chen, K. Q. Deng, T. T. Zhang, and C. Y. Zhang, 2016: Shifting El Niño inhibits summer Arctic warming and Arctic sea-ice melting over the Canada Basin. Nature Communications, 7, 11721, https://doi.org/10.1038/ncomms11721.
Huang, J. L., and W. S. Tian, 2019: Eurasian cold air outbreaks under different arctic stratospheric polar vortex strengths. J. Atmos. Sci., 76(5), 1245−1264, https://doi.org/10.1175/JAS-D-18-0285.1.
Huang, J. L., P. Hitchcock, A. C. Maycock, C. M. McKenna, and W. S. Tian, 2021: Northern hemisphere cold air outbreaks are more likely to be severe during weak polar vortex conditions. Communications Earth & Environment, 2, 147, https://doi.org/10.1038/s43247-021-00215-6.
Iwasaki, T., and Y. Mochizuki, 2012: Mass-weighted isentropic zonal mean equatorward flow in the northern hemispheric winter. SOLA, 8, 115−118, https://doi.org/10.2151/sola.2012-029.
Iwasaki, T., T. Shoji, Y. Kanno, M. Sawada, M. Ujiie, and K. Takaya, 2014: Isentropic analysis of polar cold airmass streams in the northern hemispheric winter. J. Atmos. Sci., 71, 2230−2243, https://doi.org/10.1175/JAS-D-13-058.1.
Jevrejeva, S., J. C. Moore, and A. Grinsted, 2003: Influence of the Arctic Oscillation and El Niño-Southern Oscillation (ENSO) on ice conditions in the Baltic Sea: The wavelet approach. J. Geophys. Res., 108(D21), 4677, https://doi.org/10.1029/2003jd003417.
Joh, Y., and E. Di Lorenzo, 2017: Increasing coupling between NPGO and PDO leads to prolonged marine heatwaves in the Northeast Pacific. Geophys. Res. Lett., 44, 11663−11671, https://doi.org/10.1002/2017GL075930.
Johnson, D. R., 1989: The forcing and maintenance of global monsoonal circulations: An isentropic analysis. Advances in Geophysics, 31, 43−316, https://doi.org/10.1016/S0065-2687(08)60053-9.
Kenyon, J., and G. C. Hegerl, 2008: Influence of modes of climate variability on global temperature extremes. J. Climate, 21, 3872−3889, https://doi.org/10.1175/2008JCLI2125.1.
Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nature Geoscience, 8, 433−440, https://doi.org/10.1038/ngeo2424.
Kim, J.-W., S.-W. Yeh, and E.-C. Chang, 2014: Combined effect of El Niño-Southern Oscillation and Pacific Decadal Oscillation on the East Asian winter monsoon. Climate Dyn., 42(3), 957−971, https://doi.org/10.1007/s00382-013-1730-z.
Lau, N.-C., and M. J. Nath, 2001: Impact of ENSO on SST variability in the North Pacific and North Atlantic: Seasonal dependence and role of extratropical sea–air coupling. J. Climate, 14(13), 2846−2866, https://doi.org/10.1175/1520-0442(2001)014<2846:IOEOSV>2.0.CO;2.
Lee, S. H., 2021: The January 2021 sudden stratospheric warming. Weather, 76, 135−136, https://doi.org/10.1002/wea.3966.
Lehtonen, I., and A. Y. Karpechko, 2016: Observed and modeled tropospheric cold anomalies associated with sudden stratospheric warmings. J. Geophys. Res., 121, 1591−1610, https://doi.org/10.1002/2015JD023860.
Lin, H., and J. Derome, 2004: Nonlinearity of the extratropical response to tropical forcing. J. Climate, 17, 2597−2608, https://doi.org/10.1175/1520-0442(2004)017<2597:NOTERT>2.0.CO;2.
Liu, J. P., J. A. Curry, and Y. Y. Hu, 2004: Recent arctic sea ice variability: Connections to the arctic oscillation and the ENSO. Geophys. Res. Lett., 31(9), L09211, https://doi.org/10.1029/2004gl019858.
Liu, J. P., J. A. Curry, H. J. Wang, M. R. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proceedings of the National Academy of Sciences of the United States of America, 109(11), 4074−4079, https://doi.org/10.1073/pnas.1114910109.
Lu, Q., J. Rao, Z. Q. Liang, D. Guo, J. J. Luo, S. M. Liu, C. Wang, and T. Wang, 2021: The sudden stratospheric warming in January 2021. Environmental Research Letters, 16, 084029,
Luo, B. H., D. H. Luo, A. G. Dai, I. Simmonds, and L. X. Wu, 2021: A connection of winter Eurasian cold anomaly to the modulation of Ural blocking by ENSO. Geophys. Res. Lett., 48, e2021GL094304, https://doi.org/10.1029/2021GL094304.
Luo, D. H., Y. Q. Xiao, Y. Yao, A. G. Dai, I. Simmonds, and C. L. E. Franzke, 2016: Impact of Ural blocking on winter warm Arctic-cold Eurasian anomalies. Part I: Blocking-induced amplification. J. Climate, 29(11), 3925−3947, https://doi.org/10.1175/jcli-d-15-0611.1.
Ma, T. J., and W. Chen, 2021: Climate variability of the East Asian winter monsoon and associated extratropical–tropical interaction: A review. Annals of the New York Academy of Sciences, in press,
Matsumura, S., and Y. Kosaka, 2019: Arctic-Eurasian climate linkage induced by tropical ocean variability. Nature Communications, 10(1), 3441, https://doi.org/10.1038/s41467-019-11359-7.
Mezzina, B., J. García-Serrano, I. Bladé, F. M. Palmeiro, L. Batté, C. Ardilouze, M. Benassi, and S. Gualdi, 2020: Multi-model assessment of the late-winter extra-tropical response to El Niño and La Niña. Climate Dyn., in press,
Mitchell, D. M., L. J. Gray, J. Anstey, M. P. Baldwin, and A. J. Charlton-Perez, 2013: The influence of stratospheric vortex displacements and splits on surface climate. J. Climate, 26, 2668−2682, https://doi.org/10.1175/JCLI-D-12-00030.1.
NASA, 2020: 2020 Arctic Sea Ice Minimum at Second Lowest on Record. Available from https://www.nasa.gov/feature/goddard/2020/2020-arctic-sea-ice-minimum-at-second-lowest-on-record/.
Petoukhov, V., and V. A. Semenov, 2010: A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res., 115(D21), D21111, https://doi.org/10.1029/2009jd013568.
Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217−229, https://doi.org/10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.
Rao, J., R. C. Ren, H. S. Chen, Y. Y. Yu, and Y. Zhou, 2018: The stratospheric sudden warming event in February 2018 and its prediction by a climate system model. J. Geophys. Res., 123, 13 332−13 345, https://doi.org/10.1029/2018JD028908.
Rao, J., C. I. Garfinkel, H. S. Chen, and I. P. White, 2019: The 2019 New Year stratospheric sudden warming and its real‐time predictions in multiple S2S models. J. Geophys. Res., 124, 11 155−11 174, https://doi.org/10.1029/2019JD030826.
Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 2352−2362, https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.
Sakai, K., and R. Kawamura, 2009: Remote response of the East Asian winter monsoon to tropical forcing related to El Niño–Southern Oscillation. J. Geophys. Res., 114(D6), D06105, https://doi.org/10.1029/2008jd010824.
Screen, J. A., and I. Simmonds, 2013: Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett., 40(5), 959−964, https://doi.org/10.1002/grl.50174.
Shabbar, A., and M. Khandekar, 1996: The impact of el Niño‐Southern oscillation on the temperature field over Canada: Research note. Atmos.-Ocean, 34, 401−416, https://doi.org/10.1080/07055900.1996.9649570.
Shabbar, A., B. Bonsal, and M. Khandekar, 1997: Canadian precipitation patterns associated with the Southern Oscillation. J. Climate, 10, 3016−3027, https://doi.org/10.1175/1520-0442(1997)010<3016:CPPAWT>2.0.CO;2.
Shabbar, A., and B. Yu, 2009: The 1998 – 2000 La Niña in the context of historically strong La Niña events. J. Geophys. Res., 114, D13105, https://doi.org/10.1029/2008JD011185.
Shoji, T., Y. Kanno, T. Iwasaki, and K. Takaya, 2014: An isentropic analysis of the temporal evolution of East Asian cold air outbreaks. J. Climate, 27(24), 9337−9348, https://doi.org/10.1175/JCLI-D-14-00307.1.
Sorokina, S. A., C. Li, J. J. Wettstein, and N. G. Kvamstø, 2016: Observed atmospheric coupling between Barents Sea ice and the warm-Arctic cold-Siberian anomaly pattern. J. Climate, 29(2), 495−511, https://doi.org/10.1175/jcli-d-15-0046.1.
Soulard, N., H. Lin, and B. Yu, 2019: The changing relationship between ENSO and its extratropical response patterns. Scientific Reports, 9, 6507, https://doi.org/10.1038/s41598-019-42922-3.
Sun, C. H., S. Yang, W. J. Li, R. N. Zhang, and R. G. Wu, 2016: Interannual variations of the dominant modes of East Asian winter monsoon and possible links to Arctic sea ice. Climate Dyn., 47(1−2), 481−496, https://doi.org/10.1007/s00382-015-2851-3.
Sun, L. T., C. Deser, and R. A. Tomas, 2015: Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. J. Climate, 28, 7824−7845, https://doi.org/10.1175/JCLI-D-15-0169.1.
Thompson, D. W. J., M. P. Baldwin, and J. M. Wallace, 2002: Stratospheric connection to northern Hemisphere wintertime weather: Implications for prediction. J. Climate, 15, 1421−1428, https://doi.org/10.1175/1520-0442(2002)015<1421:SCTNHW>2.0.CO;2.
Tomassini, L., E. P. Gerber, M. P. Baldwin, F. Bunzel, and M. Giorgetta, 2012: The role of stratosphere-troposphere coupling in the occurrence of extreme winter cold spells over northern Europe. Journal of Advances in Modeling Earth Systems, 4, M00A03, https://doi.org/10.1029/2012MS000177.
Townsend, R. D., and D. R. Johnson, 1985: A diagnostic study of the isentropic zonally averaged mass circulation during the first GARP global experiment. J. Atmos. Sci., 42, 1565−1579, https://doi.org/10.1175/1520-0469(1985)042<1565:ADSOTI>2.0.CO;2.
Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific-East Asian teleconnection: How does ENSO affect East Asian climate. . J. Climate, 13(9), 1517−1536, https://doi.org/10.1175/1520-0442(2000)013<1517:peathd>2.0.co;2.
Wang, L., W. Chen, and R. H. Huang, 2008: Interdecadal modulation of PDO on the impact of ENSO on the East Asian winter monsoon. Geophys. Res. Lett., 35(20), L20702, https://doi.org/10.1029/2008gl035287.
Yao, Y., D. H. Luo, A. G. Dai, and I. Simmonds, 2017: Increased quasi stationarity and persistence of winter Ural blocking and Eurasian extreme cold events in response to Arctic warming. Part I: Insights from observational analyses. J. Climate, 30(10), 3549−3568, https://doi.org/10.1175/jcli-d-16-0261.1.
Yu, Y. Y., and R. C. Ren, 2019: Understanding the variation of stratosphere–troposphere coupling during stratospheric northern annular mode events from a mass circulation perspective. Climate Dyn., 53(9-10), 5141−5164, https://doi.org/10.1007/s00382-019-04675-7.
Yu, Y. Y., M. Cai, R. C. Ren, and H. M. van den Dool, 2015a: Relationship between warm airmass transport into the upper polar atmosphere and cold air outbreaks in winter. J. Atmos. Sci., 72, 349−368, https://doi.org/10.1175/JAS-D-14-0111.1.
Yu, Y. Y., R. C. Ren, and M. Cai, 2015b: Dynamic linkage between cold air outbreaks and intensity variations of the meridional mass circulation. J. Atmos. Sci., 72, 3214−3232, https://doi.org/10.1175/JAS-D-14-0390.1.
Yu, Y. Y., R. C. Ren, and M. Cai, 2015c: Comparison of the mass circulation and AO indices as indicators of cold air outbreaks in northern winter. Geophys. Res. Lett., 42, 2442−2448, https://doi.org/10.1002/2015GL063676.
Yu, Y. Y., M. Cai, C. H. Shi, and R. C. Ren, 2018a: On the linkage among strong stratospheric mass circulation, stratospheric sudden warming, and cold weather events. Mon. Wea. Rev., 146, 2717−2739, https://doi.org/10.1175/MWR-D-18-0110.1.
Yu, Y. Y., M. Cai, and R. C. Ren, 2018b: A stochastic model with a low-frequency amplification feedback for the stratospheric northern annular mode. Climate Dyn., 50, 3757−3773, https://doi.org/10.1007/s00382-017-3843-2.
Yu, Y. Y., M. Cai, R. C. Ren, and J. Rao, 2018c: A closer look at the relationships between meridional mass circulation pulses in the stratosphere and cold air outbreak patterns in northern hemispheric winter. Climate Dyn., 51, 3125−3143, https://doi.org/10.1007/s00382-018-4069-7.
Zhang, P. F., Y. T. Wu, G. Chen, and Y. Y. Yu, 2020: North American cold events following sudden stratospheric warming in the presence of low Barents–Kara Sea sea ice. Environmental Research Letters, 15, 124017, https://doi.org/10.1088/1748-9326/abc215.
Zhang, X. D., Y. F. Fu, J. E. Overland, A. Rinke, T. Han, T. Vihma, and M. Y. Wang, 2021: Extreme cold events from East Asia to North America in winter 2020/21: Comparisons, causes, and future implications. Adv. Atmos. Sci., in press,