Besson, L., and Y. Lemaître, 2014: Mesoscale convective systems in relation to African and tropical easterly jets. Mon. Wea. Rev., 142, 3224−3242, https://doi.org/10.1175/MWR-D-13-00247.1.
Bosart, L. F., W. E. Bracken, J. Molinari, C. S. Velden, and P. G. Black, 2000: Environmental influences on the rapid intensification of Hurricane Opal (1995) over the Gulf of Mexico. Mon. Wea. Rev., 128, 322−352, https://doi.org/10.1175/1520-0493(2000)128<0322:EIOTRI>2.0.CO;2.
Chan, J. C. L., 2005: Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific. Meteorol. Atmos. Phys., 89, 143−152, https://doi.org/10.1007/s00703-005-0126-y.
Chen, G. H., and C.-Y. Tam, 2010: Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific. Geophys. Res. Lett., 37, L01803, https://doi.org/10.1029/2009GL041708.
Chen, H., 2006: A climatological study on the tropical easterly jet and Asian summer monsoon. M.S. thesis, 18pp, https://doi.org/10.7666/d.y868392. (in Chinese with English abstract
Chen, H., Y.-H. Ding, and J.-H. He, 2007: The structure and variation of tropical easterly jet and its relationship with the monsoon rainfall in Asia and Africa. Chinese Journal of Atmospheric Sciences, 31, 926−936, https://doi.org/10.3878/j.issn.1006-9895.2007.05.16. (in Chinese with English abstract
Chen, T.-C., and H. van Loon, 1987: Interannual variation of the tropical easterly jet. Mon. Wea. Rev., 115, 1739−1759, https://doi.org/10.1175/1520-0493(1987)115<1739:IVOTTE>2.0.CO;2.
Chia, H. H., and C. F. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the Northwest Pacific. J. Climate, 15, 2934−2944, https://doi.org/10.1175/1520-0442(2002)015<2934:TIVITG>2.0.CO;2.
Emanuel, K., 2018: 100 years of progress in tropical cyclone research. Meteor. Monographs, 59, 15.1−15.68, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1.
Fischer, M. S., B. H. Tang, and K. L. Corbosiero, 2017: Assessing the influence of upper-tropospheric troughs on tropical cyclone intensification rates after genesis. Mon. Wea. Rev., 145, 1295−1313, https://doi.org/10.1175/MWR-D-16-0275.1.
Fischer, M. S., B. H. Tang, and K. L. Corbosiero, 2019: A climatological analysis of tropical cyclone rapid intensification in environments of upper-tropospheric troughs. Mon. Wea. Rev., 147, 3693−3719, https://doi.org/10.1175/MWR-D-19-0013.1.
Fontaine, B., and S. Janicot, 1992: Wind-field coherence and its variations over West Africa. J. Climate, 5, 512−524, https://doi.org/10.1175/1520-0442(1992)005<0512:WFCAIV>2.0.CO;2.
Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669−700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.
Guo, Y.-P., and Z.-M. Tan, 2018: Impacts of the boreal spring Indo-Pacific warm pool Hadley circulation on tropical cyclone activity over the western North Pacific. J. Climate, 31, 1361−1375, https://doi.org/10.1175/JCLI-D-17-0422.1.
Holton, J. R., and D. O. Staley, 1973: An introduction to dynamic meteorology. American Journal of Physics, 41, 752−754, https://doi.org/10.1119/1.1987371.
Huang, S. H., B. Wang, and Z. P. Wen, 2020: Dramatic weakening of the tropical easterly jet projected by CMIP6 Models. J. Climate, 33, 8439−8455, https://doi.org/10.1175/JCLI-D-19-1002.1.
Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437−472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
Klotzbach, P., and Coauthors, 2019: Seasonal tropical cyclone forecasting. Tropical Cyclone Research and Review, 8, 134−149, https://doi.org/10.1016/j.tcrr.2019.10.003.
Koteswaram, P., 1958: The easterly jet stream in the tropics. Tellus, 10, 43−57, https://doi.org/10.3402/tellusa.v10i1.9220.
Krishnamurti, T. N., and H. N. Bhalme, 1976: Oscillations of a monsoon system. Part I. Observational aspects. J. Atmos. Sci., 33, 1937−1954, https://doi.org/10.1175/1520-0469(1976)033<1937:OOAMSP>2.0.CO;2.
Krishnamurti, T. N., N. Karmakar, V. Misra, B. Nag, D. Sahu, S. Dubey, and Z. Haddad, 2018: Association between upper level diffluence in the tropical easterly jet and the formation of the strongest Atlantic hurricanes in recent years. Proc. SPIE 10782, Remote Sensing and Modeling of the Atmosphere, Oceans, and Interactions VII, Honolulu, SPIE, 1078206pp, https://doi.org/10.1117/12.2500287.
Lemburg, A., J. Bader, and M. Claussen, 2019: Sahel rainfall-tropical easterly jet relationship on synoptic to intraseasonal time scales. Mon. Wea. Rev., 147, 1733−1752, https://doi.org/10.1175/MWR-D-18-0254.1.
Li, Y., Y. H. Ding, and W. J. Li, 2017: Interdecadal variability of the Afro-Asian summer monsoon system. Adv. Atmos. Sci., 34, 833−846, https://doi.org/10.1007/s00376-017-6247-7.
Liang, B. Q., 1990: Tropical Meteorology. Sun Yat-sen University Press, 101−104. (in Chinese)
Lu, J. X., and Y. H. Ding, 1989: Climatic study on the summer tropical easterly jet at 200hPa. Adv. Atmos. Sci., 6, 215−226, https://doi.org/10.1007/BF02658017.
Nicholson, S. E., 2009: On the factors modulating the intensity of the tropical rainbelt over West Africa. International Journal of Climatology, 29, 673−689, https://doi.org/10.1002/joc.1702.
Pattanaik, D. R., and V. Satyan, 2000: Fluctuations of tropical easterly jet during contrasting monsoons over India: A GCM study. Meteor. Atmos. Phys., 75, 51−60, https://doi.org/10.1007/s007030070015.
Pfeffer, R. L., and M. Challa, 1981: A numerical study of the role of eddy fluxes of momentum in the development of Atlantic hurricanes. J. Atmos. Sci., 38, 2393−2398, https://doi.org/10.1175/1520-0469(1981)038<2393:ANSOTR>2.0.CO;2.
Rao, S., and J. Srinivasan, 2016: The impact of latent heating on the location and strength of the tropical easterly jet. Meteorol. Atmos. Phys., 128, 247−261, https://doi.org/10.1007/s00703-015-0407-z.
Rao, V. B., C. C. Ferreira, S. H. Franchito, and S. S. V. S. Ramakrishna, 2008: In a changing climate weakening tropical easterly jet induces more violent tropical storms over the north Indian Ocean. Geophys. Res. Lett., 35, L15710, https://doi.org/10.1029/2008GL034729.
Sears, J., and C. S. Velden, 2014: Investigating the role of the upper-levels in tropical cyclone genesis. Tropical Cyclone Research and Review, 3, 91−110, https://doi.org/10.6057/2014TCRR02.03.
Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854−1997). J. Climate, 17, 2466−2477, https://doi.org/10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2.
Uccellini, L. W., and D. R. Johnson, 1979: The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Mon. Wea. Rev., 107, 682−703, https://doi.org/10.1175/1520-0493(1979)107<0682:TCOUAL>2.0.CO;2.
Vashisht, A., B. Zaitchik, and A. Gnanadesikan, 2021: ENSO teleconnection to eastern African summer rainfall in global climate models: Role of the tropical easterly jet. J. Climate, 34, 293−312, https://doi.org/10.1175/JCLI-D-20-0222.1.
Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 1643−1658, https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.
Wang, B., and H. Murakami, 2020: Dynamic genesis potential index for diagnosing present-day and future global tropical cyclone genesis. Environmental Research Letters, 15, 114008, https://doi.org/10.1088/1748-9326/abbb01.
Wang, C., and L. G. Wu, 2016: Interannual shift of the tropical upper-tropospheric trough and its influence on tropical cyclone formation over the western North Pacific. J. Climate, 29, 4203−4211, https://doi.org/10.1175/JCLI-D-15-0653.1.
Wang, C., and B. Wang, 2021: Impacts of the South Asian high on tropical cyclone genesis in the South China Sea. Climate Dyn., 56, 2279−2288, https://doi.org/10.1007/s00382-020-05586-8.
Wang, C., K. Wu, L. G. Wu, H. K. Zhao, and J. Cao, 2021: What caused the unprecedented absence of western North Pacific tropical cyclones in July 2020. Geophys. Res. Lett., 48, e2020GL092282, https://doi.org/10.1029/2020GL092282.
Wang, H. J., J. Q. Sun, and K. Fan, 2007: Relationships between the North Pacific oscillation and the typhoon/hurricane frequencies. Science in China Series D: Earth Sciences, 50, 1409−1416, https://doi.org/10.1007/s11430-007-0097-6.
Wang, Y. Q., and G. J. Holland, 1996: The beta drift of baroclinic vortices. Part II: Diabatic vortices. J. Atmos. Sci., 53, 3737−3756, https://doi.org/10.1175/1520-0469(1996)053<3737:TBDOBV>2.0.CO;2.
Wu, L., H. J. Zhang, J.-M. Chen, and T. Feng, 2018: Impact of two types of El Niño on tropical cyclones over the western North Pacific: Sensitivity to location and intensity of Pacific warming. J. Climate, 31, 1725−1742, https://doi.org/10.1175/JCLI-D-17-0298.1.
Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539−2558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.
Yang, Y. Z., 1980: Primary analysis of the formation and development of the tropical easterly over the upper troposphere. Proceedings of the Tropical Weather Conference, Science Press. (in Chinese)
Yu, J. H., T. Li, Z. M. Tan, and Z. W. Zhu, 2016: Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific. Climate Dyn., 46, 865−877, https://doi.org/10.1007/s00382-015-2618-x.
Zhan, R. F., Y. Q. Wang, and X. T. Lei, 2011: Contributions of ENSO and East Indian Ocean SSTA to the interannual variability of Northwest Pacific tropical cyclone frequency. J. Climate, 24, 509−521, https://doi.org/10.1175/2010JCLI3808.1.
Zhan, R. F., Y. Q. Wang, and M. Ying, 2012: Seasonal forecasts of tropical cyclone activity over the western North Pacific: A review. Tropical Cyclone Research and Review, 1, 307−324, https://doi.org/10.6057/2012TCRR03.07.
Zhan, R. F., Y. Q. Wang, and M. Wen, 2013: The SST gradient between the southwestern Pacific and the western Pacific warm pool: A new factor controlling the northwestern Pacific tropical cyclone genesis frequency. J. Climate, 26, 2408−2415, https://doi.org/10.1175/JCLI-D-12-00798.1.
Zhan, R. F., Y. Q. Wang, and J. W. Zhao, 2019: Contributions of SST anomalies in the Indo-Pacific Ocean to the interannual variability of tropical cyclone genesis frequency over the western North Pacific. J. Climate, 32, 3357−3372, https://doi.org/10.1175/JCLI-D-18-0439.1.
Zhang, L. L., 1986: The upper-level southern easterly jet and the activity of typhoon. Journal of Tropical Meteorology, 2, 62−70. (in Chinese with English abstract)
Zhang, W., G. A. Vecchi, H. Murakami, G. Villarini, and L. Jia, 2016: The Pacific Meridional Mode and the occurrence of tropical cyclones in the western North Pacific. J. Climate, 29, 381−398, https://doi.org/10.1175/JCLI-D-15-0282.1.
Zhou, B. T., and X. Cui, 2008: Hadley circulation signal in the tropical cyclone frequency over the western North Pacific. J. Geophys. Res., 113, D16107, https://doi.org/10.1029/2007JD009156.