Adler, R. F., and Coauthors, 2018: The Global Precipitation Climatology Project (GPCP) monthly analysis (New Version 2.3) and a review of 2017 global precipitation. Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138.
Bhartia, P. K., 2002: OMI algorithm theoretical basis document Volume II: OMI ozone products, ATBD-OMI-02, Version 2.0. [Available from https://eospso.gsfc.nasa.gov/sites/default/files/atbd/ATBD-OMI-02.pdf]
Bond, T. C., E. Bhardwaj, R. Dong, R. Jogani, S. Jung, C. Roden, D. G. Streets, and N. M. Trautmann, 2007: Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850−2000: Historical BC/OC emissions. Global Biogeochemical Cycles, 21(2), GB2018, https://doi.org/10.1029/2006GB002840.
Collins, W. J., and Coauthors, 2017: AerChemMIP: Quantifying the effects of chemistry and aerosols in CMIP6. Geoscientific Model Development, 10, 585−607, https://doi.org/10.5194/gmd-10-585-2017.
Danabasoglu, G., and Coauthors, 2020: The community earth system model version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.
EC-JRC/PBL, 2012: Emissions Database for Global Atmospheric Research (EDGAR), release EDGARv4.2 FT2012. [Available from http://edgar.jrc.ec.europa.eu]
Emmons, L. K., and Coauthors, 2020: The chemistry mechanism in the community earth system model version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12, e2019MS001882, https://doi.org/10.1029/2019MS001882.
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937−1958, https://doi.org/10.5194/gmd-9-1937-2016.
Fan, T., and Coauthors, 2018: Emission or atmospheric processes? An attempt to attribute the source of large bias of aerosols in eastern China simulated by global climate models. Atmospheric Chemistry and Physics, 18, 1395−1417, https://doi.org/10.5194/acp-18-1395-2018.
Feng, L. Y., and Coauthors, 2020: The generation of gridded emissions data for CMIP6. Geoscientific Model Development, 13, 461−482, https://doi.org/10.5194/gmd-13-461-2020.
Forster, P., and Coauthors, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC, S. Solomon et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Gettelman, A., and H. Morrison, 2015: Advanced two-moment bulk microphysics for global models. Part I: Off-line tests and comparison with other schemes. J. Climate, 28, 1268−1287, https://doi.org/10.1175/JCLI-D-14-00102.1.
Golaz, J.-C., V. E. Larson, and W. R. Cotton, 2002: A PDF-based model for boundary layer clouds. Part I: Method and model description. J. Atmos. Sci., 59, 3540−3551, https://doi.org/10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2.
Goldewijk, K. K., A. Beusen, G. van Drecht, and M. de Vos, 2011: The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Global Ecology and Biogeography, 20, 73−86, https://doi.org/10.1111/J.1466-8238.2010.00587.X.
Hersbach, H., and Coauthors, 2019: ERA5 monthly averaged data on pressure levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.6860a573.
Hoesly, R. M., and Coauthors, 2018: Historical (1750−2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geoscientific Model Development, 11, 369−408, https://doi.org/10.5194/gmd-11-369-2018.
Lamarque, J.-F., and Coauthors, 2013: The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Overview and description of models, simulations and climate diagnostics. Geoscientific Model Development, 6, 179−206, https://doi.org/10.5194/gmd-6-179-2013.
Larson, V. E., 2017: CLUBB-SILHS: A parameterization of subgrid variability in the atmosphere. arXiv:1711.03675v2.
Lei, Y., Q. Zhang, K. B. He, and D. G. Streets, 2011: Primary anthropogenic aerosol emission trends for China, 1990-2005. Atmospheric Chemistry and Physics, 11, 931−954, https://doi.org/10.5194/acp-11-931-2011.
Levy, R. C., S. Mattoo, L. A. Munchak, L. A. Remer, A. M. Sayer, F. Patadia, and N. C. Hsu, 2013: The Collection 6 MODIS aerosol products over land and ocean. Atmospheric Measurement Techniques, 6, 2989−3034, https://doi.org/10.5194/amt-6-2989-2013.
Li, J. W., and Z. W. Han, 2012: A modeling study of seasonal variation of atmospheric aerosols over East Asia. Adv. Atmos. Sci., 29(1), 101−117, https://doi.org/10.1007/s00376-011-0234-1.
Li, M., and Coauthors, 2014: Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms. Atmospheric Chemistry and Physics, 14, 5617−5638, https://doi.org/10.5194/acp-14-5617-2014.
Li, M., and Coauthors, 2017: MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmospheric Chemistry and Physics, 17, 935−963, https://doi.org/10.5194/acp-17-935-2017.
Liu, F., Q. Zhang, D. Tong, B. Zheng, M. Li, H. Huo, and K. B. He, 2015: High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010. Atmospheric Chemistry and Physics, 15, 13299−13317, https://doi.org/10.5194/acp-15-13299-2015.
Liu, J. J., Y. F. Zheng, Z. Q. Li, C. Flynn, and M. Cribb, 2012a: Seasonal variations of aerosol optical properties, vertical distribution and associated radiative effects in the Yangtze Delta region of China. J. Geophys. Res.: Atmos., 117, D00K38, https://doi.org/10.1029/2011JD016490.
Liu, X., P.-L. Ma, H. Wang, S. Tilmes, B. Singh, R. C. Easter, S. J. Ghan, and P. J. Rasch, 2016: Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model. Geoscientific Model Development, 9, 505−522, https://doi.org/10.5194/gmd-9-505-2016.
Liu, X., and Coauthors, 2012b: Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5. Geoscientific Model Development, 5, 709−739, https://doi.org/10.5194/gmd-5-709-2012.
Lu, Z., X. H. Liu, R. A. Zaveri, R. C. Easter, S. Tilmes, L. K. Emmons, and Coauthors, 2021: Radiative forcing of nitrate aerosols from 1975 to 2010 as simulated by MOSAIC module in CESM2-MAM4. J. Geophys. Res.: Atmos, 126, e2021JD034809, https://doi.org/10.1029/2021JD034809.
Park, S. S., T. Takemura, and S.-W. Kim, 2018: Comparison of aerosol optical depth between observation and simulation from MIROC-SPRINTARS: Effects of temporal inhomogeneous sampling. Atmos. Environ., 186, 56−73, https://doi.org/10.1016/j.atmosenv.2018.05.021.
Randles, C. A., and Coauthors, 2017: The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation. J. Climate, 30, 6823−6850, https://doi.org/10.1175/JCLI-D-16-0609.1.
Remer, L. A., and Coauthors, 2008: Global aerosol climatology fromthe MODIS satellite sensors. J. Geophys. Res.: Atmos., 113, D14S07, https://doi.org/10.1029/2007JD009661.
Sayer, A. M., L. A. Munchak, N. C. Hsu, R. C. Levy, C. Bettenhausen, and M.-J. Jeong, 2014: MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res.: Atmos., 119, 13965−13989, https://doi.org/10.1002/2014JD022453.
Schutgens, N. A. J., D. G. Partridge, and P. Stier, 2016: The importance of temporal collocation for the evaluation of aerosol models with observations. Atmospheric Chemistry and Physics, 16, 1065−1079, https://doi.org/10.5194/acp-16-1065-2016.
Shindell, D. T., and Coauthors, 2013: Radiative forcing in the ACCMIP historical and future climate simulations. Atmospheric Chemistry and Physics, 13, 2939−2974, https://doi.org/10.5194/acp-13-2939-2013.
Smith, C. J., and Coauthors, 2020: Effective radiative forcing and adjustments in CMIP6 models. Atmospheric Chemistry and Physics, 20, 9591−9618, https://doi.org/10.5194/acp-20-9591-2020.
Streets, D. G., Q. Zhang, L. T. Wang, K. B. He, J. M. Hao, Y. Wu, Y. H. Tang, and G. R. Carmichael, 2006: Revisiting China’s CO emissions after the Transport and Chemical Evolution over the Pacific (TRACE-P) mission: Synthesis of inventories, atmospheric modeling, and observations. J. Geophys. Res.: Atmos., 111, D14306, https://doi.org/10.1029/2006JD007118.
van Marle, M. J. E., and Coauthors, 2017: Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750−2015). Geoscientific Model Development, 10, 3329−3357, https://doi.org/10.5194/gmd-10-3329-2017.
Wang, S. W., and Coauthors, 2012: Growth in NOx emissions from power plants in China: Bottom-up estimates and satellite observations. Atmospheric Chemistry and Physics, 12, 4429−4447, https://doi.org/10.5194/acp-12-4429-2012.
Wu, M. X., and Coauthors, 2020: Understanding processes that control dust spatial distributions with global climate models and satellite observations. Atmospheric Chemistry and Physics, 20, 13835−13855, https://doi.org/10.5194/acp-20-13835-2020.
Yang, Y., L. M. Russell, S. J. Lou, H. Liao, J. P. Guo, Y. Liu, B. Singh, and S. J. Ghan, 2017: Dust-wind interactions can intensify aerosol pollution over eastern China. Nature Communications, 8, 15333, https://doi.org/10.1038/ncomms15333.
Zhang, Q., D. G. Streets, K. B. He, and Z. Klimont, 2007a: Major components of China’s anthropogenic primary particulate emissions. Environmental Research Letters, 2, 045027, https://doi.org/10.1088/1748-9326/2/4/045027.
Zhang, Q., and Coauthors, 2007b: NOx emission trends for China, 1995−2004: The view from the ground and the view from space. J. Geophys. Res.: Atmos., 112, D22306, https://doi.org/10.1029/2007JD008684.
Zhang, Q., and Coauthors, 2009: Asian emissions in 2006 for the NASA INTEX-B mission. Atmospheric Chemistry and Physics, 9, 5131−5153, https://doi.org/10.5194/acp-9-5131-2009.
Zhang, R., and Coauthors, 2013: Chemical characterization and source apportionment of PM2.5 in Beijing: Seasonal perspective. Atmospheric Chemistry and Physics, 13, 7053−7074, https://doi.org/10.5194/acp-13-7053-2013.
Zheng, B., H. Huo, Q. Zhang, Z. L. Yao, X. T. Wang, X. F. Yang, H. Liu, and K. B. He, 2014: High-resolution mapping of vehicle emissions in China in 2008. Atmospheric Chemistry and Physics, 14, 9787−9805, https://doi.org/10.5194/acp-14-9787-2014.
Ziemke, J. R., S. Chandra, G. J. Labow, P. K. Bhartia, L. Froidevaux, and J. C. Witte, 2011: A global climatology of tropospheric and stratospheric ozone derived from Aura OMI and MLS measurements. Atmospheric Chemistry and Physics, 11, 9237−9251, https://doi.org/10.5194/acp-11-9237-2011.