An, S.-I., and J. Choi, 2014: Mid-Holocene tropical Pacific climate state, annual cycle, and ENSO in PMIP2 and PMIP3. Climate Dyn., 43, 957−970, https://doi.org/10.1007/s00382-013-1880-z.
An, S.-I., H.-J. Kim, W. Park, and B. Schneider, 2017: Impact of ENSO on East Asian winter monsoon during interglacial periods: Effect of orbital forcing. Climate Dyn., 49, 3209−3219, https://doi.org/10.1007/s00382-016-3506-8.
Bao, Q., and Coauthors, 2013: The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci., 30, 561−576, https://doi.org/10.1007/s00376-012-2113-9.
Bartlein, P. J., and S. L. Shafer, 2019: Paleo calendar-effect adjustments in time-slice and transient climate-model simulations (PaleoCalAdjust v1.0): Impact and strategies for data analysis. Geoscientific Model Development, 12, 3889−3913, https://doi.org/10.5194/gmd-12-3889-2019.
Bartlein, P. J., and Coauthors, 2011: Pollen-based continental climate reconstructions at 6 and 21 ka: A global synthesis. Climate Dyn., 37, 775−802, https://doi.org/10.1007/s00382-010-0904-1.
Berger, A., and M. F. Loutre, 1991: Insolation values for the climate of the last 10 million years. Quaternary Science Reviews, 10, 297−317, https://doi.org/10.1016/0277-3791(91)90033-Q.
Braconnot, P., and Coauthors, 2007: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum -Part 1: Experiments and large-scale features. Climate of the Past, 3, 261−277, https://doi.org/10.5194/cp-3-261-2007.
Braconnot, P., S. P. Harrison, B. Otto-Bliesner, A. Abe-Ouchi, J. Jungclaus, and J. Y. Peterschmitt, 2011: The paleoclimate modeling intercomparison project contribution to CMIP5. CLIVAR Exchanges, 16, 15−19.
Braconnot, P., S. P. Harrison, M. Kageyama, P. J. Bartlein, V. Masson-Delmotte, A. Abe-Ouchi, B. Otto-Bliesner, and Y. Zhao, 2012: Evaluation of climate models using palaeoclimatic data. Nat. Clim. Change, 2, 417−424, https://doi.org/10.1038/nclimate1456.
Capron, E., and Coauthors, 2014: Temporal and spatial structure of multi-millennial temperature changes at high latitudes during the Last Interglacial. Quaternary Science Reviews, 103, 116−133, https://doi.org/10.1016/j.quascirev.2014.08.018.
Capron, E., A. Govin, R. Feng, B. L. Otto-Bliesner, and E. W. Wolff, 2017: Critical evaluation of climate syntheses to benchmark CMIP6/PMIP4 127 ka Last Interglacial simulations in the high-latitude regions. Quaternary Science Reviews, 168, 137−150, https://doi.org/10.1016/j.quascirev.2017.04.019.
Chen, L., W. P. Zheng, and P. Braconnot, 2019: Towards understanding the suppressed ENSO activity during mid-Holocene in PMIP2 and PMIP3 simulations. Climate Dyn., 53, 1095−1110, https://doi.org/10.1007/s00382-019-04637-z.
Cheng, H., and Coauthors, 2012: The climatic cyclicity in semiarid-arid central Asia over the past 500:000 years. Geophys. Res. Lett., 39, L01705, https://doi.org/10.1029/2011GL050202.
Cole, J., 2001: A slow dance for El Niño. Science, 291, 1496−1497, https://doi.org/10.1126/science.1059111.
Craig, T., 2014: CPL7 User’s Guide. Available from www.cesm.ucar.edu/models/cesm1.2/cpl7/doc/book1.html.
Emile-Geay, J., and Coauthors, 2016: Links between tropical Pacific seasonal, interannual and orbital variability during the Holocene. Nature Geoscience, 9, 168−173, https://doi.org/10.1038/ngeo2608.
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the coupled model intercomparison project phase 6(CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937−1958, https://doi.org/10.5194/gmd-9-1937-2016.
Harrison, S. P., and Coauthors, 2014: Climate model benchmarking with glacial and mid-Holocene climates. Climate Dyn., 43, 671−688, https://doi.org/10.1007/s00382-013-1922-6.
He, B., and Coauthors, 2019: CAS FGOALS-f3-L model datasets for CMIP6 historical atmospheric model intercomparison project simulation. Adv. Atmos. Sci., 36, 771−778, https://doi.org/10.1007/s00376-019-9027-8.
Hoffman, J. S., P. U. Clark, A. C. Parnell, and F. He, 2017: Regional and global sea-surface temperatures during the last interglaciation. Science, 355, 276−279, https://doi.org/10.1126/science.aai8464.
Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos sea ice model documentation and software user's manual version. T-3 Fluid Dynamics Group, Los Alamos National Laboratory, 76 pp.
Joussaume, S., and K. E. Taylor, 1995: Status of the paleoclimate modeling intercomparison project (PMIP). World Meteorological Organization-Publications-WMO TD, 425−430.
Joussaume, S., and P. Braconnot, 1997: Sensitivity of paleoclimate simulation results to season definitions. J. Geophys. Res., 102, 1943−1956, https://doi.org/10.1029/96JD01989.
Jungclaus, J. H., and Coauthors, 2017: The PMIP4 contribution to CMIP6 - Part 3: The last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations. Geoscientific Model Development, 10, 4005−4033, https://doi.org/10.5194/gmd-10-4005-2017.
Kageyama, M., and Coauthors, 2017: The PMIP4 contribution to CMIP6 - Part 4: Scientific objectives and experimental design of the PMIP4-CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments. Geoscientific Model Development, 10, 4035−4055, https://doi.org/10.5194/gmd-10-4035-2017.
Kageyama, M., and Coauthors, 2018: The PMIP4 contribution to CMIP6 - Part 1: Overview and over-arching analysis plan. Geoscientific Model Development, 11, 1033−1057, https://doi.org/10.5194/gmd-11-1033-2018.
Karamperidou, C., P. N. Di Nezio, A. Timmermann, F.-F. Jin, and K. M. Cobb, 2015: The response of ENSO flavors to mid-Holocene climate: Implications for proxy interpretation. Paleoceanography, 30, 527−547, https://doi.org/10.1002/2014PA002742.
Kaufman, D., and Coauthors, 2020: A global database of Holocene paleotemperature records. Scientific Data, 7, 115, https://doi.org/10.1038/s41597-020-0445-3.
Li, J. X., Q. Bao, Y. M. Liu, G. X. Wu, L. Wang, B. He, X. C. Wang, and J. D. Li, 2019: Evaluation of FAMIL2 in simulating the climatology and seasonal-to-interannual variability of tropical cyclone characteristics. Journal of Advances in Modeling Earth Systems, 11, 1117−1136, https://doi.org/10.1029/2018MS001506.
Li, L. J., and Coauthors, 2013: The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2. Adv. Atmos. Sci., 30, 543−560, https://doi.org/10.1007/s00376-012-2140-6.
Li, L., and Coauthors, 2020: The Flexible Global Ocean-Atmosphere-Land System Model Grid-Point Version 3(FGOALS-g3): Description and Evaluation. Journal of Advances in Modeling Earth Systems, 12, e2019MS002012, https://doi.org/10.1029/2019MS002012.
Lin, P. F., and Coauthors, 2020: LICOM model datasets for the CMIP6 ocean model intercomparison project. Adv. Atmos. Sci., 37, 239−249, https://doi.org/10.1007/s00376-019-9208-5.
Liu, J. P., 2010: Sensitivity of sea ice and ocean simulations to sea ice salinity in a coupled global climate model. Science China Earth Sciences, 53, 911−918, https://doi.org/10.1007/s11430-010-0051-x.
Man, W. M., and T. J. Zhou, 2011: Forced response of atmospheric oscillations during the last millennium simulated by a climate system model. Chinese Science Bulletin, 56, 3042−3052, https://doi.org/10.1007/s11434-011-4637-2.
Milner, A. M., R. E. L. Collier, K. H. Roucoux, U. C. Müller, J. Pross, S. Kalaitzidis, K. Christanis, and P. C. Tzedakis, 2012: Enhanced seasonality of precipitation in the Mediterranean during the early part of the Last Interglacial. Geology, 40, 919−922, https://doi.org/10.1130/G33204.1.
Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the community land model (CLM). No. NCAR/TN-478+STR, https://doi.org/10.5065/D6FB50WZ.
Otto-Bliesner, B. L., and Coauthors, 2017: The PMIP4 contribution to CMIP6 - Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations. Geoscientific Model Development, 10, 3979−4003, https://doi.org/10.5194/gmd-10-3979-2017.
Rodbell, D. T., G. O. Seltzer, D. M. Anderson, M. B. Abbott, D. B. Enfield, and J. H. Newman, 1999: An ~15:000-year record of El Niño-driven alluviation in southwestern Ecuador. Science, 283, 516−520, https://doi.org/10.1126/science.283.5401.516.
Scussolini, P., and Coauthors, 2019: Agreement between reconstructed and modeled boreal precipitation of the Last Interglacial. Science Advances, 5, eaax7047, https://doi.org/10.1126/sciadv.aax7047.
Tudhope, A. W., and Coauthors, 2001: Variability in the El Niño-southern oscillation through a glacial-interglacial cycle. Science, 291, 1511−1517, https://doi.org/10.1126/science.1057969.
White, S. M., A. C. Ravelo, and P. J. Polissar, 2018: Dampened El Niño in the early and mid-Holocene due to insolation-forced warming/deepening of the thermocline. Geophys. Res. Lett., 45, 316−326, https://doi.org/10.1002/2017GL075433.
Yu, Y. Q., W. P. Zheng, B. Wang, H. L. Liu, and J. P. Liu, 2010: Versions g1.0 and g1.1 of the LASG/IAP flexible global ocean-atmosphere-land system model. Adv. Atmos. Sci., 28, 99−117, https://doi.org/10.1007/s00376-010-9112-5.
Zheng, W. P., and Y. Q. Yu, 2013: Paleoclimate simulations of the mid-Holocene and last glacial maximum by FGOALS. Adv. Atmos. Sci., 30, 684−698, https://doi.org/10.1007/s00376-012-2177-6.
Zheng, W., P. Braconnot, E. Guilyardi, U. Merkel, and Y. Yu, 2008: ENSO at 6 ka and 21 ka from ocean-atmosphere coupled model simulations. Climate Dyn., 30, 745−762, https://doi.org/10.1007/s00382-007-0320-3.
Zheng, W., Z. Zhang, L. Chen, and Y. Yu, 2013: The mid-Pliocene climate simulated by FGOALS-g2. Geoscientific Model Development, 6, 1127−1135, https://doi.org/10.5194/gmd-6-1127-2013.
Zheng, W. P., W. M. Man, Y. Sun, and Y. H. Luan, 2019: Short commentary on CMIP6 paleoclimate modelling intercomparison project phase 4(PMIP4). Climate Change Research, 15, 510−518, https://doi.org/10.12006/j.issn.1673-1719.2019.085. (in Chinese with English abstract)