Anderson, J. L., 1996: A method for producing and evaluating probabilistic forecasts from ensemble model integrations. J. Climate, 9(7), 1518−1530, https://doi.org/10.1175/1520-0442(1996)009<1518:AMFPAE>2.0.CO;2.
Andreas, E. L., and K. A. Emanuel, 2001: Effects of sea spray on tropical cyclone intensity. J. Atmos. Sci., 58(24), 3741−3751, https://doi.org/10.1175/1520-0469(2001)058<3741:EOSSOT>2.0.CO;2.
Balaguru, K., G. R. Foltz, L. R. Leung, E. D’Asaro, K. A. Emanuel, H. L. Liu, and S. E. Zedler, 2015: Dynamic potential intensity: An improved representation of the ocean’s impact on tropical cyclones. Geophys. Res. Lett., 42(16), 6739−6746, https://doi.org/10.1002/2015GL064822.
Booij, N., R. C. Ris, and L. H. Holthuijsen, 1999: A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res.: Oceans, 104(C4), 7649−7666, https://doi.org/10.1029/98JC02622.
Bruneau, N., R. Toumi, and S. Wang, 2018: Impact of wave whitecapping on land falling tropical cyclones. Scientific Reports, 8(1), 652, https://doi.org/10.1038/s41598-017-19012-3.
Chan, J. C. L., Y. H. Duan, and L. K. Shay, 2001: Tropical cyclone intensity change from a simple ocean-atmosphere coupled model. J. Atmos. Sci., 58(2), 154−172, https://doi.org/10.1175/1520-0469(2001)058<0154:TCICFA>2.0.CO;2.
Chu, J. H., C. R. Sampson, A. S. Levine, and E. Fukada, 2002: The joint typhoon warning center tropical cyclone best-tracks, 1945−2000. Report NRL/MR/7540-02-16.
Cione, J. J., and E. W. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131(8), 1783−1796, https://doi.org/10.1175//2562.1.
Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43(6), 585−605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.
Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401(6754), 665−669, https://doi.org/10.1038/44326.
Garg, N., E. Y. K. Ng, and S. Narasimalu, 2018: The effects of sea spray and atmosphere-wave coupling on air-sea exchange during a tropical cyclone. Atmospheric Chemistry and Physics, 18(8), 6001−6021, https://doi.org/10.5194/acp-18-6001-2018.
Hong Kong Observatory, 2019: Tropical Cyclone in 2017. Hong Kong, China. https://www.hko.gov.hk/en/publica/tc/files/TC2017.pdf.
Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological Society, 42(2), 129−151.
Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134(9), 2318−2341, https://doi.org/10.1175/MWR3199.1.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113(D13), D13103, https://doi.org/10.1029/2008JD009944.
Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140(3), 898−918, https://doi.org/10.1175/MWR-D-11-00056.1.
Larson, J., R. Jacob, and E. Ong, 2005: The model coupling toolkit: A new Fortran90 toolkit for building multiphysics parallel coupled models. The International Journal of High Performance Computing Applications, 19(3), 277−292, https://doi.org/10.1177/1094342005056115.
Lengaigne, M., and Coauthors, 2019: Influence of air-sea coupling on Indian Ocean tropical cyclones. Climate Dyn., 52(1), 577−598, https://doi.org/10.1007/s00382-018-4152-0.
Liu, B., H. Q. Liu, L. Xie, C. L. Guan, and D. L. Zhao, 2011: A coupled atmosphere-wave-ocean modeling system: Simulation of the intensity of an idealized tropical cyclone. Mon. Wea. Rev., 139(1), 132−152, https://doi.org/10.1175/2010MWR3396.1.
Liu, K. S., and J. C. L. Chan, 2017: Variations in the power dissipation index in the East Asia region. Climate Dyn., 48(5-6), 1963−1985, https://doi.org/10.1007/s00382-016-3185-5.
Liu, X., J. Wei, D.-L. Zhang, and W. Miller, 2019: Parameterizing sea surface temperature cooling induced by tropical cyclones: 1. Theory and an application to typhoon Matsa (2005). J. Geophys. Res.: Oceans, 124(2), 1215−1231, https://doi.org/10.1029/2018JC014117.
Lok, C. C. F., and J. C. L. Chan, 2018a: Simulating seasonal tropical cyclone intensities at landfall along the South China coast. Climate Dyn., 50(7−8), 2661−2672, https://doi.org/10.1007/s00382-017-3762-2.
Lok, C. C. F., and J. C. L. Chan, 2018b: Changes of tropical cyclone landfalls in South China throughout the twenty-first century. Climate Dyn., 51(7−8), 2467−2483, https://doi.org/10.1007/s00382-017-4023-0.
Lok, C. C. F., and J. C. L. Chan, and R. Toumi, 2021: Tropical cyclones near landfall can induce their own intensification through feedbacks on radiative forcing. Communications Earth and Environment, 2, 184, https://doi.org/10.1038/s43247-021-00259-8.
Mei, W., C. Pasquero, and F. Primeau, 2012: The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean. Geophys. Res. Lett., 39(7), L07801, https://doi.org/10.1029/2011GL050765.
Pal, J. S., and Coauthors, 2007: Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET. Bull. Amer. Meteor. Soc., 88(9), 1395−1410, https://doi.org/10.1175/BAMS-88-9-1395.
Pun, I.-F., and Coauthors, 2019: Rapid intensification of typhoon Hato (2017) over shallow water. Sustainability, 11(13), 3709, https://doi.org/10.3390/su11133709.
Riehl, H., 1950: A model of hurricane formation. J. Appl. Phys., 21(9), 917−925, https://doi.org/10.1063/1.1699784.
Saha, S., and Coauthors, 2010: The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91(8), 1015−1058, https://doi.org/10.1175/2010BAMS3001.1.
Schade, L. R., and K. A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere-ocean model. J. Atmos. Sci., 56(4), 642−651, https://doi.org/10.1175/1520-0469(1999)056<0642:TOSEOT>2.0.CO;2.
Shchepetkin, A. F., and J. C. McWilliams, 2005: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4), 347−404, https://doi.org/10.1016/j.ocemod.2004.08.002.
Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR/TN-475+STR.
Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117(8), 1779−1800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.
Vincent, E. M., M. Lengaigne, J. Vialard, G. Madec, N. C. Jourdain, and S. Masson, 2012: Assessing the oceanic control on the amplitude of sea surface cooling induced by tropical cyclones. J. Geophys. Res.: Oceans, 117(C5), C05023, https://doi.org/10.1029/2011JC007705.
Wada, A., T. Uehara, and S. Ishizaki, 2014: Typhoon-induced sea surface cooling during the 2011 and 2012 typhoon seasons: Observational evidence and numerical investigations of the sea surface cooling effect using typhoon simulations. Progress in Earth and Planetary Science, 1(1), 11, https://doi.org/10.1186/2197-4284-1-11.
Warner, J. C., B. Armstrong, R. Y. He, and J. B. Zambon, 2010: Development of a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system. Ocean Modelling, 35(3), 230−244, https://doi.org/10.1016/j.ocemod.2010.07.010.
Wu, L. G., B. Wang, and S. A. Braun, 2005: Impacts of air-sea interaction on tropical cyclone track and intensity. Mon. Wea. Rev., 133(11), 3299−3314, https://doi.org/10.1175/MWR3030.1.
Zarzycki, C. M., 2016: Tropical cyclone intensity errors associated with lack of two-way ocean coupling in high-resolution global simulations. J. Climate, 29(23), 8589−8610, https://doi.org/10.1175/JCLI-D-16-0273.1.
Zhang, R. W., J. L. Huangfu, and T. Hu, 2019: Dynamic mechanism for the evolution and rapid intensification of typhoon Hato (2017). Atmospheric Science Letters, 20(8), e930, https://doi.org/10.1002/asl.930.
Zhao, X. H., and J. C. L. Chan, 2017: Changes in tropical cyclone intensity with translation speed and mixed-layer depth: Idealized WRF-ROMS coupled model simulations. Quart. J. Roy. Meteor. Soc., 143(702), 152−163, https://doi.org/10.1002/qj.2905.