Bitz, C. M., and L. M. Polvani, 2012: Antarctic climate response to stratospheric ozone depletion in a fine resolution ocean climate model. Geophys. Res. Lett., 39(20), L20705, https://doi.org/10.1029/2012GL053393.
Cionni, I., and Coauthors, 2011: Ozone database in support of CMIP5 simulations: Results and corresponding radiative forcing. Atmospheric Chemistry and Physics, 11(21), 11 267−11 292, https://doi.org/10.5194/acp-11-11267-2011.
Ferreira, D., J. Marshall, C. M. Bitz, S. Solomon, and A. Plumb, 2015: Antarctic ocean and sea-ice response to ozone depletion: A two-time-scale problem. J. Climate, 28(3), 1206−1226, https://doi.org/10.1175/jcli-d-14-00313.1.
Fyfe, J. C., N. P. Gillett, and G. J. Marshall, 2012: Human influence on extratropical southern Hemisphere summer precipitation. Geophys. Res. Lett., 39, L23711, https://doi.org/10.1029/2012GL054199.
Gent, P. R., and Coauthors, 2011: The community climate system model version 4. J. Climate, 24(19), 4973−4991, https://doi.org/10.1175/2011JCLI4083.1.
Grise, K. M., L. M. Polvani, G. Tselioudis, Y. T. Wu, and M. D. Zelinka, 2013: The ozone hole indirect effect: Cloud-radiative anomalies accompanying the poleward shift of the eddy-driven jet in the southern Hemisphere. Geophys. Res. Lett., 40(14), 3688−3692, https://doi.org/10.1002/grl.50675.
Haumann, F. A., D. Notz, and H. Schmidt, 2014: Anthropogenic influence on recent circulation-driven Antarctic sea-ice changes. Geophys. Res. Lett., 41(23), 8429−8437, https://doi.org/10.1002/2014GL061659.
Hu, Y. Y., L. J. Tao, and J. P. Liu, 2013: Poleward expansion of the hadley circulation in CMIP5 simulations. Adv. Atmos. Sci., 30(3), 790−795, https://doi.org/10.1007/s00376-012-2187-4.
Huang, Y., Y. Xia, and X. X. Tan, 2017: On the pattern of CO2 radiative forcing and poleward energy transport. J. Geophys. Res., 122, 10 578−10 593, https://doi.org/10.1002/2017JD027221.
Jenkins, G. S., 1999: Examining the sensitivity of Earth’s climate to the removal of ozone, landmasses and enhanced ocean heat transport in the GENESIS global climate model. Global and Planetary Change, 20(4), 257−279, https://doi.org/10.1016/S0921-8181(98)00070-8.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102(D14), 16 663−16 682, https://doi.org/10.1029/97JD00237.
Neale, R. B., J. Richter, S. Park, P. H. Lauritzen, S. J. Vavrus, P. J. Rasch, and M. H. Zhang, 2013: The mean climate of the community atmosphere model (CAM4) in forced SST and fully coupled experiments. J. Climate, 26(14), 5150−5168, https://doi.org/10.1175/JCLI-D-12-00236.1.
Nowack, P. J., N. L. Abraham, A. C. Maycock, P. Braesicke, J. M. Gregory, M. M. Joshi, A. Osprey, and J. A. Pyle, 2015: A large ozone-circulation feedback and its implications for global warming assessments. Nat. Clim. Chang, 5, 41−45, https://doi.org/10.1038/nclimate2451.
Polvani, L. M., and K. L. Smith, 2013: Can natural variability explain observed Antarctic sea-ice trends? New modeling evidence from CMIP5 Geophys. Res. Lett., 40(12), 3195−3199, https://doi.org/10.1002/grl.50578.
Polvani, L. M., D. W. Waugh, G. J. P. Correa, and S.-W. Son, 2011: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the southern Hemisphere. J. Climate, 24(3), 795−812, https://doi.org/10.1175/2010JCLI3772.1.
Previdi, M., and L. M. Polvani, 2014: Climate system response to stratospheric ozone depletion and recovery. Quart. J. Roy. Meteor. Soc., 140(685), 2401−2419, https://doi.org/10.1002/qj.2330.
Sigmond, M., and J. C. Fyfe, 2010: Has the ozone hole contributed to increased Antarctic sea-ice extent? Geophys. Res. Lett., 37(18), L18502, https://doi.org/10.1029/2010GL044301.
Sigmond, M., and J. C. Fyfe, 2014: The Antarctic sea-ice response to the ozone hole in climate models. J. Climate, 27(3), 1336−1342, https://doi.org/10.1175/JCLI-D-13-00590.1.
Smith, K. L., L. M. Polvani, and D. R. Marsh, 2012: Mitigation of 21st century Antarctic sea-ice loss by stratospheric ozone recovery. Geophys. Res. Lett., 39(20), L20701, https://doi.org/10.1029/2012GL053325.
Son, S.-W., N. F. Tandon, L. M. Polvani, and D. W. Waugh, 2009: Ozone hole and southern Hemisphere climate change. Geophys. Res. Lett., 36, L15705, https://doi.org/10.1029/2009GL038671.
Tao, L. J., Y. Y. Hu, and J. P. Liu, 2016: Anthropogenic forcing on the Hadley circulation in CMIP5 simulations. Climate Dyn., 46, 3337−3350, https://doi.org/10.1007/s00382-015-2772-1.
Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93(4), 485−498, https://doi.org/10.1175/BAMS-D-11-00094.1.
Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent southern Hemisphere climate change. Science, 296(5569), 895−899, https://doi.org/10.1126/science.1069270.
Thompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in southern Hemisphere surface climate change. Nature Geoscience, 4(11), 741−749, https://doi.org/10.1038/ngeo1296.
Turner, J., and Coauthors, 2009: Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea-ice extent. Geophys. Res. Lett., 36, L08502, https://doi.org/10.1029/2009GL037524.
Turner, J., T. J. Bracegirdle, T. Phillips, G. J. Marshall, and J. S. Hosking, 2013: An initial assessment of Antarctic sea-ice extent in the CMIP5 models. J. Climate, 26(5), 1473−1484, https://doi.org/10.1175/JCLI-D-12-00068.1.
Xia, Y., Y. Y. Hu, and Y. Huang, 2016: Strong modification of stratospheric ozone forcing by cloud and sea-ice adjustments. Atmospheric Chemistry and Physics, 16(12), 7559−7567, https://doi.org/10.5194/acp-16-7559-2016.
Xia, Y., Y. Huang, and Y. Y. Hu, 2018: On the climate impacts of upper tropospheric and lower stratospheric ozone. J. Geophys. Res., 123, 730−739, https://doi.org/10.1002/2017JD027398.
Yang, J., Y. Hu, and W. R. Peltier, 2012: Radiative effects of ozone on the climate of a Snowball Earth. Climate of the Past, 8(6), 2019−2029, https://doi.org/10.5194/cp-8-2019-2012.