Banacos, P. C., and D. M. Schultz, 2005: The use of moisture flux convergence in forecasting convective initiation: Historical and operational perspectives. Wea. Forecasting, 20, 351−366, https://doi.org/10.1175/WAF858.1.
Barlage, M., F. Chen, R. Rasmussen, Z. Zhang, and G. Miguez-Macho, 2021: The importance of scale-dependent groundwater processes in land-atmosphere interactions over the central United States. Geophys. Res. Lett., 48, e2020GL092171. https://doi.org/10.1029/2020GL092171.
Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283−290, https://doi.org/10.1175/1520-0477-38.5.283.
Bleeker, W., and M. J. Andre, 1951: On the diurnal variation of precipitation, particularly over central U.S.A., and its relation to large-scale orographic circulation systems. Quart. J. Roy. Meteor. Soc., 77, 260−271, https://doi.org/10.1002/qj.497 07733211.
Brockhaus, P., D. Lüthi, and C. Schär, 2008: Aspects of the diurnal cycle in a regional climate model. Meteor. Z., 17, 433−443, https://doi.org/10.1127/0941-2948/2008/0316.
Bukovsky, M. S., and D. J. Karoly, 2009: Precipitation simulations using WRF as a nested regional climate model. J. Appl. Meteorol. Climatol., 48, 2152−2159, https://doi.org/10.1175/2009JAMC2186.1.
Carbone, R. E., and J. D. Tuttle, 2008: Rainfall occurrence in the U.S. warm season: The diurnal cycle. J. Climate, 21, 4132−4146, https://doi.org/10.1175/2008JCLI2275.1.
Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 2033−2056, https://doi.org/10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.
Caya, D., and R. Laprise, 1999: A semi-implicit semi-lagrangian regional climate model: The Canadian RCM. Mon. Wea. Rev., 127, 341−362, https://doi.org/10.1175/1520-0493(1999)127<0341:ASISLR>2.0.CO;2.
Chen, H. M., T. J. Zhou, R. C. Yu, and J. Li, 2009: Summer rain fall duration and its diurnal cycle over the US Great Plains. International Journal of Climatology, 29, 1515−1519, https://doi.org/10.1002/joc.1806.
Clark, A. J., W. A. Gallus, M. Xue, and F. Y. Kong, 2009: A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Wea. Forecasting, 24, 1121−1140, https://doi.org/10.1175/2009WAF2222222.1.
Dai, A. G., F. Giorgi, and K. E. Trenberth, 1999: Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res.: Atmos., 104, 6377−6402, https://doi.org/10.1029/98JD02720.
Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteorol. Climatol., 33, 140−158, https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.
Davis, C. A., K. W. Manning, R. E. Carbone, S. B. Trier, and J. D. Tuttle, 2003: Coherence of warm-season continental rainfall in numerical weather prediction models. Mon. Wea. Rev., 131, 2667−2679, https://doi.org/10.1175/1520-0493(2003)131<2667:COWCRI>2.0.CO;2.
Dickinson, R. E., R. M. Errico, F. Giorgi, and G. T. Bates, 1989: A regional climate model for the western United States. Climatic Change, 15, 383−422, https://doi.org/10.1007/BF0 0240465.
Diem, J. E., 2006: Synoptic-scale controls of summer precipitation in the southeastern United States. J. Climate, 19, 613−621, https://doi.org/10.1175/JCLI3645.1.
Gao, Y., L. R. Leung, C. Zhao, and S. Hagos, 2017: Sensitivity of U.S. summer precipitation to model resolution and convective parameterizations across gray zone resolutions. J. Geophys. Res.: Atmos., 122, 2714−2733, https://doi.org/10.1002/2016JD025896.
Geerts, B., and Coauthors, 2017: The 2015 plains elevated convection at night field project. Bull. Amer. Meteor. Soc., 98, 767−786, https://doi.org/10.1175/BAMS-D-15-00257.1.
Giorgi, F., 2019: Thirty years of regional climate modeling: Where are we and where are we going next?. J. Geophys. Res.: Atmos., 124 (11), 5696−5723, https://doi.org/74210.1029/2018JD030094.
Giorgi, F., M. R. Marinucci, and G. T. Bates, 1993a: Development of a second-generation regional climate model (RegCM2). Part I: Boundary-layer and radiative transfer processes. Mon. Wea. Rev., 121, 2794−2813, https://doi.org/10.1175/1520-0493(1993)121<2794:DOASGR>2.0.CO;2.
Giorgi, F., M. R. Marinucci, G. T. Bates, and G. De Canio, 1993b: Development of a second-generation regional climate model (RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon. Wea. Rev., 121, 2814−2832, https://doi.org/10.1175/1520-0493(1993)121<2 814:DOASGR>2.0.CO;2.
Gochis, D. J., W. J. Shuttleworth, and Z. L. Yang, 2002: Sensitivity of the modeled North American monsoon regional climate to convective parameterization. Mon. Wea. Rev., 130, 1282−1298, https://doi.org/10.1175/1520-0493(2002)130<1 282:SOTMNA>2.0.CO;2.
Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29 , 38-1−38-4, https://doi.org/10.1029/2002GL015311.
Grell, G. A., J. Dudhia, and D. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). No. NCAR/TN-398+STR, https://doi.org/10.5065/D60Z716B.
Gutowski, W. J., and Coauthors, 2010: Regional extreme monthly precipitation simulated by NARCCAP RCMs. Journal of Hydrometeorology, 11, 1373−1379, https://doi.org/10.1175/2010JHM1297.1.
Gutowski, W. J., and Coauthors, 2020: The ongoing need for high-resolution regional climate models: Process understanding and stakeholder information. Bull. Amer. Meteor. Soc., 101, E664−E683, https://doi.org/10.1175/BAMS-D-19-01 13.1.
Harding, K. J., and P. K. Snyder, 2014: Examining future changes in the character of Central U.S. warm-season precipitation using dynamical downscaling. J. Geophys. Res.: Atmos., 119 , 13 116−13 136, https://doi.org/doi:10.1002/2014JD022575.
Harding, K. J., P. K. Snyder, and S. Liess, 2013: Use of dynamical downscaling to improve the simulation of Central U.S. warm season precipitation in CMIP5 models. J. Geophys. Res.: Atmos., 118 , 12 522−12 536, https://doi.org/10.1002/2013JD019994.
Harris, L. M., and S. J. Lin, 2014: Global-to-regional nested grid climate simulations in the GFDL high resolution atmospheric model. J. Climate, 27, 4890−4910, https://doi.org/10.1175/JCLI-D-13-00596.1.
Helfand, H. M., and S. D. Schubert, 1995: Climatology of the simulated great plains low-level jet and its contribution to the continental moisture budget of the United States. J. Climate, 8, 784−806, https://doi.org/10.1175/1520-0442(1995)008<07 84:COTSGP>2.0.CO;2.
Henderson, K. G., and A. J. Vega, 1996: Regional precipitation variability in the southern United States. Physical Geography, 17, 93−112, https://doi.org/10.1080/02723646.1996.10642576.
Hering, W. S., and T. R. Borden, 1962: Diurnal variations in the summer wind field over the central United States. J. Atmos. Sci., 19, 81−86, https://doi.org/10.1175/1520-0469(1962)019<0081:dvitsw>2.0.co;2.
Higgins, R. W., Y. Yao, E. S. Yarosh, J. E. Janowiak, and K. C. Mo, 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10, 481−507, https://doi.org/10.1175/1520-0442(1997)010<0481:IOTGPL>2.0.CO;2.
Houze, R. A. Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, https://doi.org/. https://doi.org/10.1029/2004RG000150.
Hu, X.-M., M. Xue, R. A. McPherson, E. Martin, D. H. Rosendahl, and L. Qiao, 2018: Precipitation dynamical downscaling over the Great Plains. Journal of Advances in Modeling Earth Systems, 10, 421−447, https://doi.org/10.1002/2017MS001154.
Huang, X. G., C. Zhang, J. F. Fei, X. P. Cheng, J. L. Ding, and H. S. Liu, 2022: Uplift mechanism of coastal extremely persistent heavy rainfall (EPHR): The key role of low-level jets and ageostrophic winds in the boundary layer. Geophys. Res. Lett., 49, e2021GL096029. https://doi.org/10.1029/2021GL096029.
Jiang, X. N., N. C. Lau, and S. A. Klein, 2006: Role of eastward propagating convection systems in the diurnal cycle and seasonal mean of summertime rainfall over the U.S. Great Plains. Geophys. Res. Lett., 33, L19809. https://doi.org/10.1029/2006GL027022.
Juang, H. M. H., S. Y. Hong, and M. Kanamitsu, 1997: The NCEP regional spectral model: An update. Bull. Amer. Meteor. Soc., 78, 2125−2144, https://doi.org/10.1175/1520-0477(1997)078<2125:TNRSMA>2.0.CO;2.
Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631−1644, https://doi.org/10.1175/BAMS-83-11-1631.
Katz, R. W., M. B. Parlange, and C. Tebaldi, 2003: Stochastic modeling of the effects of large-scale circulation on daily weather in the southeastern U.S. Climatic Change, 60, 189−216, https://doi.org/10.1023/A:1026054330406.
Kawazoe, S., and W. J. Gutowski Jr., 2013: Regional, very heavy daily precipitation in NARCCAP simulations. Journal of Hydrometeorolohy, 14, 1212−1227, https://doi.org/10.1175/JHM-D-12-068.1.
Kawazoe, S., and W. J. Gutowski Jr., 2018: Evaluation of regional very heavy precipitation events during the summer season using NARCCAP contemporary simulations. International Journal of Climatology, 38, s832−s846, https://doi.org/10.1002/joc.5412.
Kim, J., and Coauthors, 2013: Evaluation of the surface climatology over the conterminous united states in the north american regional climate change assessment program hindcast experiment using a regional climate model evaluation system. J. Climate, 26, 5698−5715, https://doi.org/10.1175/JCLI-D-12-00452.1.
Klein, S. A., X. N. Jiang, J. Boyle, S. Malyshev, and S. C. Xie, 2006: Diagnosis of the summertime warm and dry bias over the U.S. Southern Great Plains in the GFDL climate model using a weather forecasting approach. Geophys. Res. Lett., 33, L18805. https://doi.org/10.1029/2006GL027567.
Kwon, Y. C., and S. Y. Hong, 2017: A mass-flux cumulus parameterization scheme across gray-zone resolutions. Mon. Wea. Rev., 145, 583−598, https://doi.org/10.1175/MWR-D-16-0034.1.
Lavers, D. A., A. Simmons, F. Vamborg, and M. J. Rodwell, 2022: An evaluation of ERA5 precipitation for climate monitoring. Quart. J. Roy. Meteor. Soc., 148, 3152−3165, https://doi.org/10.1002/qj.4351.
Lee, M.-I., and Coauthors, 2007a: An analysis of the warm-weason diurnal cycle over the Continental United States and Northern Mexico in general circulation models. Journal of Hydrometeorology, 8, 344−366, https://doi.org/10.1175/JHM581.1.
Lee, M. I., and Coauthors, 2007b: Sensitivity to horizontal resolution in the AGCM simulations of Warm season diurnal cycle of precipitation over the United States and Northern Mexico. J. Climate, 20, 1862−1881, https://doi.org/10.1175/JCLI 4090.1.
Leung, L. R., and Y. Qian, 2009: Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model. Geophys. Res. Lett., 36, L03820. https://doi.org/10.1029/2008GL036445.
Li, W. H., L. F. Li, R. Fu, Y. Deng, and H. Wang, 2011: Changes to the North Atlantic subtropical high and its role in the intensification of summer rainfall variability in the southeastern United States. J. Climate, 24, 1499−1506, https://doi.org/10.1175/2010JCLI3829.1.
Liang, X. Z., L. Li, A. G. Dai, and K. E. Kunkel, 2004: Regional climate model simulation of summer precipitation diurnal cycle over the United States. Geophys. Res. Lett., 31, L24208. https://doi.org/10.1029/2004GL021054.
Liang, X. Z., J. P. Pan, J. H. Zhu, K. E. Kunkel, J. X. L. Wang, and A. G. Dai, 2006: Regional climate model downscaling of the U.S. summer climate and future change. J. Geophys. Res.: Atmos., 111, D10108. https://doi.org/10.1029/2005JD 006685.
Lim, K. S. S., S. Y. Hong, J. H. Yoon, and J. Han, 2014: Simulation of the summer monsoon rainfall over East Asia using the NCEP GFS cumulus parameterization at different horizontal resolutions. Wea. Forecasting, 29, 1143−1154, https://doi.org/10.1175/WAF-D-13-00143.1.
Lin, Y., and K. E. Mitchell, 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, American Meteorological Society, San Diego, CA, USA, Paper 1.2. [Available online at https://ams.confex.com/ams/Annual2005/webprogram/Paper83847.html.
Loriaux, J. M., G. Lenderink, and A. P. Siebesma, 2016: Peak precipitation intensity in relation to atmospheric conditions and large-scale forcing at midlatitudes. J. Geophys. Res.: Atmos., 121, 5471−5487, https://doi.org/. https://doi.org/10.1002/2015JD024274.
Mearns, L. O., W. Gutowski, R. Jones, R. Leung, S. McGinnis, A. Nunes, and Y. Qian, 2009: A regional climate change assessment program for North America. Eos, Transsactions American Geophysical Union, 90, 311. https://doi.org/10.1029/2009EO360002.
Mearns, L. O., and Coauthors, 2012: The north american regional climate change assessment program: Overview of phase I results. Bull. Amer. Meteor. Soc., 93, 1337−1362, https://doi.org/10.1175/BAMS-D-11-00223.1.
Mesinger, F., and Coauthors, 2006: North American regional reanalysis. Bull. Amer. Meteor. Soc., 87, 343−360, https://doi.org/10.1175/BAMS-87-3-343.
Molinari, J., and M. Dudek, 1992: Parameterization of convective precipitation in mesoscale numerical models: A critical review. Mon. Wea. Rev., 120, 326−344, https://doi.org/10.1175/1520-0493(1992)120<0326:POCPIM>2.0.CO;2.
Nakicenovic, N., and Coauthors, 2000: Special report on emissions scenarios: A special report of working group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 599pp.
Nelson, B. R., O. P. Prat, D.-J. Seo, and E. Habib, 2016: Assessment and implications of NCEP Stage IV quantitative precipitation estimates for product intercomparisons. Wea. Forecasting, 31, 371−394, https://doi.org/10.1175/WAF-D-14-00112.1.
Ortegren, J. T., P. A. Knapp, J. T. Maxwell, W. P. Tyminski, and P. T. Soulé, 2011: Ocean–ttmosphere influences on low-frequency warm-season drought variability in the Gulf Coast and southeastern United States. J. Appl. Meteorol. Climatol., 50, 1177−1186, https://doi.org/10.1175/2010JAMC2566.1.
Pan, Z., J. H. Christensen, R. W. Arritt, W. J. Gutowski, E. S. Takle, and F. Otieno, 2001: Evaluation of uncertainties in regional climate change simulations. J. Geophys. Res.: Atmos., 106 , 17 735−17 751, https://doi.org/10.1029/2001JD900193.
Pauluis, O., A. Czaja, and R. Korty, 2008: The global atmospheric circulation on moist isentropes. Science, 321, 1075−1078, https://doi.org/10.1126/science.1159649.
Pitchford, K. L., and J. London, 1962: The low-level jet as related to nocturnal thunderstorms over midwest United States. J. Appl. Meteorol., 1, 43−47, https://doi.org/10.1175/1520-0450(1962)001<0043:TLLJAR>2.0.CO;2.
Pope, V. D., M. L. Gallani, P. R. Rowntree, and R. A. Stratton, 2000: The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Climate Dyn., 16, 123−146, https://doi.org/10.1007/s003820050009.
Prein, A. F., C. H. Liu, K. Ikeda, R. Bullock, R. M. Rasmussen, G. J. Holland, and M. Clark, 2020: Simulating North American mesoscale convective systems with a convection-permitting climate model. Climate Dyn., 55, 95−110, https://doi.org/10.1007/s00382-017-3993-2.
Qiao, F. X., and X. Z. Liang, 2015: Effects of cumulus parameterizations on predictions of summer flood in the Central United States. Climate Dyn., 45, 727−744, https://doi.org/10.1007/s00382-014-2301-7.
Riley, G. T., M. G. Landin, and L. F. Bosart, 1987: The diurnal variability of precipitation across the central Rockies and adjacent Great Plains. Mon. Wea. Rev., 115, 1161−1172, https://doi.org/10.1175/1520-0493(1987)115<1161:TDVOPA>2.0.CO;2.
Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the advanced research WRF Version 2. NCAR/TN-468+STR, University Corporation for Atmospheric Research, http://dx.doi.org/10.5065/D6DZ069T.
Stahle, D. W., and M. K. Cleaveland, 1992: Reconstruction and analysis of spring rainfall over the southeastern U. S. for the past 1000 years. Bull. Amer. Meteor. Soc., 73, 1947−1961, https://doi.org/10.1175/1520-0477(1992)073<1947:RAAOSR>2.0.CO;2.
Sun, X. G., M. Xue, J. Brotzge, R. A. McPherson, X.-M. Hu, and X.-Q. Yang, 2016: An evaluation of dynamical downscaling of central plains summer precipitation using a WRF-based regional climate model at a convection-permitting 4 km resolution. J. Geophys. Res.: Atmos., 121 , 13 801−13 825, https://doi.org/10.1002/2016JD024796.
Tang, Y., S. Y. Zhong, J. A. Winker, and C. K. Walters, 2016: Evaluation of the southerly low-level jet climatology for the central United States as simulated by NARCCAP regional climate models. International Journal of Climatology, 36, 4338−4357, https://doi.org/10.1002/joc.4636.
Tapiador, F. J., A. Navarro, R. Moreno, J. L. Sánchez, and E. García-Ortega, 2020: Regional climate models: 30 years of dynamical downscaling. Atmospheric Research, 235, 104785. https://doi.org/10.1016/j.atmosres.2019.104785.
Tian, B. J., I. M. Held, N. C. Lau, and B. J. Soden, 2005: Diurnal cycle of summertime deep convection over North America: A satellite perspective. J. Geophys. Res.: Atmos., 110, D08108. https://doi.org/10.1029/2004JD005275.
Tian, B. J., and Coauthors, 2017: Development of a model performance metric and its application to assess summer precipitation over the U.S. great plains in downscaled climate simulations. Journal of Hydrometeorology, 18, 2781−2799, https://doi.org/10.1175/JHM-D-17-0045.1.
Trier, S. B., S. D. Kehler, and J. Hanesiak, 2020: Observations and simulation of elevated nocturnal convection initiation on 24 June 2015 during PECAN. Mon. Wea. Rev., 148, 613−635, https://doi.org/10.1175/MWR-D-19-0218.1.
Wallace, J. M., 1975: Diurnal variations in precipitation and thunderstorm frequency over the Conterminous United States. Mon. Wea. Rev., 103, 406−419, https://doi.org/10.1175/1520-0493(1975)103<0406:DVIPAT>2.0.CO;2.
Wang, S.-Y., and T.-C. Chen, 2009: The late-spring maximum of rainfall over the U.S. Central Plains and the role of the Low-Level Jet. J. Climate, 22, 4696−4709, https://doi.org/10.1175/2009JCLI2719.1.
Wang, S. Y., R. R. Gillies, E. S. Takle, and W. J. Gutowski, 2009: Evaluation of precipitation in the Intermountain Region as simulated by the NARCCAP regional climate models. Geophys. Res. Lett., 36, L11704. https://doi.org/10.1029/2009GL037930.
Wang, D., A. F. Prein, S. E. Giangrande, A. Ramos-Valle, M. Ge, and M. P. Jensen, 2022: Convective updraft and downdraft characteristics of continental mesoscale convective systems in the model gray zone. J. Geophys. Res.: Atmos., 127, e2022JD036746. https://doi.org/10.1029/2022JD036746.
Weckwerth, T. M., and U. Romatschke, 2019: Where, when, and why did it rain during PECAN?. Mon. Wea. Rev., 147, 3557−3573, https://doi.org/10.1175/MWR-D-18-0458.1.
Weckwerth, T. M., and Coauthors, 2004: An overview of the international H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253−278, https://doi.org/10.1175/BAMS-85-2-253.
Weisman, M. L., W. C. Skamarock, and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125, 527−548, https://doi.org/10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2.
Xue, M., X. Luo, K. F. Zhu, Z. Q. Sun, and J. F. Fei, 2018: The controlling role of boundary layer inertial oscillations in Meiyu frontal precipitation and its diurnal cycles over China. J. Geophys. Res.: Atmos., 123, 5090−5115, https://doi.org/10.1029/2018JD028368.
Zhu, J. H., and X.-Z. Liang, 2005: Regional climate model simulation of U.S. soil temperature and moisture during 1982−2002. J. Geophys. Res.: Atmos., 110 , D24110, https://doi.org/10.1029/2005JD006472.
Zhu, J. H., and X.-Z. Liang, 2007: Regional climate model simulations of U.S. precipitation and surface air temperature during 1982−2002: Interannual variation. J. Climate, 20 , 218−232, https://doi.org/10.1175/JCLI4129.1.