Baik, J. J., and H. S. Hwang, 1998: Tropical cyclone intensity prediction using regression method and neural network. J. Meteor. Soc. Japan, 76, 711−717, https://doi.org/10.2151/jmsj1965.76.5_711.
Baik, J.-J., and J.-S. Paek, 1998: A climatology of sea surface temperature and the maximum intensity of western North Pacific tropical cyclones. J. Meteor. Soc. Japan, 76, 129−137, https://doi.org/10.2151/jmsj1965.76.1_129.
Bender, M. A., I. Ginis, R. Tuleya, B. Thomas, and T. Marchok, 2007: The operational GFDL coupled hurricane-ocean prediction system and a summary of its performance. Mon. Wea. Rev., 135, 3965−3989, https://doi.org/10.1175/2007MWR2032.1.
Cangialosi, J. P., 2020: National hurricane center forecast verification report: 2019 hurricane season. National Hurricane Center, Miami, Fla.
Cangialosi, J. P., E. Blake, M. DeMaria, A. Penny, A. Latto, E. Rappaport, and V. Tallapragada, 2020: Recent progress in tropical cyclone intensity forecasting at the National Hurricane Center. Wea. Forecasting, 35, 1913−1922, https://doi.org/10.1175/WAF-D-20-0059.1.
Chen, G. M., X. P. Zhang, L. N. Bai, and R. J. Wan, 2019: Verification on forecasts of tropical cyclones over western North Pacific and South China Sea in 2017. Meteorological Monthly, 45, 577−586, https://doi.org/10.7519/j.issn.1000-0526.2019.04.012. (in Chinese with English abstract
Chen, P. Y., H. Yu, and J. C. L. Chan, 2011: A western North Pacific tropical cyclone intensity prediction scheme. Acta Meteorologica Sinica, 25, 611−624, https://doi.org/10.1007/s13351-011-0506-9.
Cloud, K. A., B. J. Reich, C. M. Rozoff, S. Alessandrini, W. E. Lewis, and L. D. Monache, 2019: A feed forward neural network based on model output statistics for short-term Hurricane intensity prediction. Wea. Forecasting, 34, 985−997, https://doi.org/10.1175/WAF-D-18-0173.1.
DeMaria, M., 2009: A simplified dynamical system for tropical cyclone Intensity prediction. Mon. Wea. Rev., 137, 68−82, https://doi.org/10.1175/2008MWR2513.1.
DeMaria, M., and J. Kaplan, 1994: A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209−220, https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.
DeMaria, M., and J. Kaplan, 1997: An operational evaluation of a statistical hurricane intensity prediction scheme (SHIPS). Preprints, 22nd Conf. on Hurricanes and Tropical Meteorology, Boston, American Meteorological Society.
Dong, L., S. Z. Gao, Y. L. Xu, X. Y. Lü, and Y. W. Huang, 2019: Analysis of characteristics and forecast difficulties of TCs on western North Pacific in 2017. Meteorological Monthly, 45, 1322−1334, https://doi.org/10.7519/j.issn.1000-0526.2019.09.012. (in Chinese with English abstract
Duan Y. H., H. Yu, and R. S. Wu, 2005: Review of the research in the intensity change of tropical cyclone. Acta Meteorologica Sinica, 63, 636−645, https://doi.org/10.3321/j.issn:0577-6619.2005.05.009. (in Chinese with English abstract
Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420−430, https://doi.org/10.1175/1520-0493(1975)103<0420:TCIAAF>2.0.CO;2.
Elsberry, R. L., L. S. Chen, J. Davidson, R. Rogers, Y. Q. Wang, and L. G. Wu, 2013: Advances in understanding and forecasting rapidly changing phenomena in tropical cyclones. Tropical Cyclone Research and Review, 2, 13−24, https://doi.org/10.6057/2013TCRR01.02.
Emanuel, K., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61(7), 843−858, https://doi.org/10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.
Groemping, U., 2006: Relative importance for linear regression in R: The package relaimpo. Journal of Statistical Software, 17, 1−27, https://doi.org/10.18637/jss.v017.i01.
Heming, J. T., and Coauthors, 2019: Review of recent progress in tropical cyclone track forecasting and expression of uncertainties. Tropical Cyclone Research and Review, 8, 181−218, https://doi.org/10.1016/j.tcrr.2020.01.001.
Huang, X. Y., Z. Y. Guan, L. He, Y. Huang, and H. S. Zhao, 2016: A PNN prediction scheme for local tropical cyclone intensity over the South China Sea. Natural Hazards, 81, 1249−1267, https://doi.org/10.1007/s11069-015-2132-9.
Jin, Q. W., X. T. Fan, J. Liu, Z. X. Xue, and H. D. Jian, 2019: Using eXtreme gradient BOOSTing to predict changes in tropical cyclone intensity over the western North Pacific. Atmosphere, 10, 341, https://doi.org/10.3390/atmos10060341.
Ju, Y., G. Y. Sun, Q. H. Chen, M. Zhang, H. X. Zhu, and M. U. Rehman, 2019: A model combining convolutional neural network and LightGBM algorithm for Ultra-Short-Term wind power forecasting. IEEE Access, 7, 28309−28318, https://doi.org/10.1109/ACCESS.2019.2901920.
Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437−472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
Ke, G. L., Q. Meng, T. Finley, T. F. Wang, W. Chen, W. D. Ma, Q. W. Ye, and T. Y. Liu, 2017: LightGBM: A highly efficient gradient boosting decision tree. Proc. 31st Int. Conf. on Neural Information Processing Systems, Long Beach, California, USA, NIPS.
Knaff, J. A., C. R. Sampson, and M. DeMaria, 2005: An operational statistical typhoon intensity prediction scheme for the western North Pacific. Wea. Forecasting, 20, 688−699, https://doi.org/10.1175/WAF863.1.
Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nature Geoscience, 3, 157−163, https://doi.org/10.1038/ngeo779.
Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 2030−2045, https://doi.org/10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2.
Li, Z. C., L. Zhang, Q. F. Qian, S. H. Ma, J. Xu, K. Dai, Y. Chen, and D. Y. Wang, 2020: The development and consideration of typhoon forecast operation of national Meteorological Center. Transactions of Atmospheric Sciences, 43, 10−19, https://doi.org/10.13878/j.cnki.dqkxxb.20200110015.(inChinesewithEnglishabstract). (in Chinese with English abstract
Lindeman, R. H., 1980: Introduction to bivariate and multivariate analysis. J. Am. Stat. Assoc., 76, 752.
Ma, L. M., and Z. M. Tan, 2009: Improving the behavior of the cumulus parameterization for tropical cyclone prediction: Convection trigger. Atmospheric Research, 92, 190−211, https://doi.org/10.1016/j.atmosres.2008.09.022.
R Core Team, 2013: R: A language and environment for statis-ticalcomputing. R Core Team, Vienna, Austria
Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Q. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609−1625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.
Su, H., L. T. Wu, J. H. Jiang, R. Pai, A. Liu, A. J. Zhai, P. Tavallali, and M. DeMaria, 2020: Applying satellite observations of tropical cyclone internal structures to rapid intensification forecast with machine learning. Geophys. Res. Lett., 47, e2020GL089102, https://doi.org/10.1029/2020GL089102.
Velden, C. S., T. L. Olander, and R. M. Zehr, 1998: Development of an objective scheme to estimate tropical cyclone intensity from digital geostationary satellite infrared imagery. Wea. Forecasting, 13, 172−186, https://doi.org/10.1175/1520-0434(1998)013<0172:DOAOST>2.0.CO;2.
Wang, X. D., C. Z. Wang, L. P. Zhang, and X. Wang, 2015a: Multidecadal variability of tropical cyclone rapid intensification in the western North Pacific. J. Climate, 28, 3806−3820, https://doi.org/10.1175/JCLI-D-14-00400.1.
Wang, Y., and C.-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes-A review. Meteor. Atmos. Phys., 87, 257−278, https://doi.org/10.1007/s00703-003-0055-6.
Wang, Y. Q., Y. J. Rao, Z. M. Tan, and D. Schönemann, 2015b: A statistical analysis of the effects of vertical wind shear on tropical cyclone intensity change over the western North Pacific. Mon. Wea. Rev., 143, 3434−3453, https://doi.org/10.1175/MWR-D-15-0049.1.
Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.
Xu, Y. L., L. Zhang, and S. Z. Gao, 2010: The advances and discussions on China operational typhoon forecasting. Meteorological Monthly, 36, 43−49. (in Chinese with English abstract
Yang, F. L., H. L. Pan, S. K. Krueger, S. Moorthi, and S. J. Lord, 2006: Evaluation of the NCEP global forecast system at the ARM SGP Site. Mon. Wea. Rev., 134, 3668−3690, https://doi.org/10.1175/MWR3264.1.
Zeng, Z. H., Y. Q. Wang, and C.-C. Wu, 2007: Environmental dynamical control of tropical Cyclone intensity-An observational study. Mon. Wea. Rev., 135, 38−59, https://doi.org/10.1175/MWR3278.1.
Zhang, J., D. Mucs, U. Norinder, and F. Svensson, 2019: LightGBM: An effective and scalable algorithm for prediction of chemical toxicity–application to the Tox21 and mutagenicity data sets. Journal of Chemical Information and Modeling, 59, 4150−4158, https://doi.org/10.1021/acs.jcim.9b00633.