Alton, P. B., 2008: Reduced carbon sequestration in terrestrial ecosystems under overcast skies compared to clear skies. Agricultural and Forest Meteorology, 148, 1641−1653, https://doi.org/10.1016/j.agrformet.2008.05.014.
Bellouin, N., and Coauthors, 2020: Bounding global aerosol radiative forcing of climate change. Rev. Geophys., 58, e2019RG000660, https://doi.org/10.1029/2019RG000660.
Bey, I., and Coauthors, 2001: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J. Geophys. Res.: Atmos., 106, 23 073−23 095, https://doi.org/10.1029/2001JD000807.
Bian, H. S., and Coauthors, 2021: The response of the Amazon ecosystem to the photosynthetically active radiation fields: Integrating impacts of biomass burning aerosol and clouds in the NASA GEOS Earth system model. Atmospheric Chemistry and Physics, 21, 14 177−14 197, https://doi.org/10.5194/acp-21-14177-2021.
Bond, T. C., and Coauthors, 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res.: Atmos., 118, 5380−5552, https://doi.org/10.1002/jgrd.50171.
Breider, T. J., and Coauthors, 2017: Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980. J. Geophys. Res.: Atmos., 122, 3573−3594, https://doi.org/10.1002/2016JD025321.
Chakraborty, T., and X. Lee, 2021: Large differences in diffuse solar radiation among current-generation reanalysis and satellite-derived products. J. Climate, 34, 6635−6650, https://doi.org/10.1175/JCLI-D-20-0979.1.
Chakraborty, T., X. Lee, and D. M. Lawrence, 2021: Strong local evaporative cooling over land due to atmospheric aerosols. Journal of Advances in Modeling Earth Systems, 13, e2021MS002491, https://doi.org/10.1029/2021MS002491.
Chakraborty, T., X. Lee, and D. M. Lawrence, 2022: Diffuse radiation forcing constraints on gross primary productivity and global terrestrial evapotranspiration. Earth's Future, 10, e2022EF002805, https://doi.org/10.1029/2022EF002805.
Chen, M., and Q. L. Zhuang, 2014: Evaluating aerosol direct radiative effects on global terrestrial ecosystem carbon dynamics from 2003 to 2010. Tellus B: Chemical and Physical Meteorology, 66, 21808, https://doi.org/10.3402/tellusb.v66.21808.
Chen, Y., D. M. Romps, J. T. Seeley, S. Veraverbeke, W. J. Riley, Z. A. Mekonnen, and J. T. Randerson, 2021: Future increases in Arctic lightning and fire risk for permafrost carbon. Nature Climate Change, 11, 404−410, https://doi.org/10.1038/s41558-021-01011-y.
Cirino, G. G., R. A. F. Souza, D. K. Adams, and P. Artaxo, 2014: The effect of atmospheric aerosol particles and clouds on net ecosystem exchange in the Amazon. Atmospheric Chemistry and Physics, 14, 6523−6543, https://doi.org/10.5194/acp-14-6523-2014.
Donohue, R. J., M. L. Roderick, T. R. McVicar, and G. D. Farquhar, 2013: Impact of CO2 fertilization on maximum foliage cover across the globe's warm, arid environments. Geophys. Res. Lett., 40, 3031−3035, https://doi.org/10.1002/grl.50563.
Dorrepaal, E., S. Toet, R. S. P. van Logtestijn, E. Swart, M. J. van de Weg, T. V. Callaghan, and R. Aerts, 2009: Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature, 460, 616−619, https://doi.org/10.1038/nature08216.
Doughty, C. E., M. G. Flanner, and M. L. Goulden, 2010: Effect of smoke on subcanopy shaded light, canopy temperature, and carbon dioxide uptake in an Amazon rainforest. Global Biogeochemical Cycles, 24, GB3015, https://doi.org/10.1029/2009GB003670.
Fridley, J. D., J. S. Lynn, J. P. Grime, and A. P. Askew, 2016: Longer growing seasons shift grassland vegetation towards more-productive species. Nature Climate Change, 6, 865−868, https://doi.org/10.1038/nclimate3032.
Friedl, M. A., D. Sulla-Menashe, B. Tan, A. Schneider, N. Ramankutty, A. Sibley, and X. M. Huang, 2010: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114, 168−182, https://doi.org/10.1016/j.rse.2009.08.016.
Friedlingstein, P., and Coauthors, 2020: Global carbon budget 2020. Earth System Science Data, 12, 3269−3340, https://doi.org/10.5194/essd-12-3269-2020.
Garrett, T. J., and C. F. Zhao, 2006: Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature, 440, 787−789, https://doi.org/10.1038/nature04636.
Garrett, T. J., C. F. Zhao, and P. C. Novelli, 2010: Assessing the relative contributions of transport efficiency and scavenging to seasonal variability in Arctic aerosol. Tellus B: Chemical and Physical Meteorology, 62, 190−196, https://doi.org/10.1111/j.1600-0889.2010.00453.x.
Gong, W. M., and Coauthors, 2018: Assessing the impact of shipping emissions on air pollution in the Canadian Arctic and northern regions: Current and future modelled scenarios. Atmospheric Chemistry and Physics, 18, 16 653−16 687, https://doi.org/10.5194/acp-18-16653-2018.
Graversen, R. G., T. Mauritsen, M. Tjernström, E. Källén, and G. Svensson, 2008: Vertical structure of recent Arctic warming. Nature, 451, 53−56, https://doi.org/10.1038/nature06502.
Gu, L. H., D. D. Baldocchi, S. C. Wofsy, J. W. Munger, J. J. Michalsky, S. P. Urbanski, and T. A. Boden, 2003: Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis. Science, 299, 2035−2038, https://doi.org/10.1126/science.1078366.
Guenther, A. B., X. Jiang, C. L. Heald, T. Sakulyanontvittaya, T. Duhl, L. K. Emmons, and X. Wang, 2012: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5, 1471−1492, https://doi.org/10.5194/gmd-5-1471-2012.
Hemes, K. S., J. Verfaillie, and D. D. Baldocchi, 2020: Wildfire-smoke aerosols lead to increased light use efficiency among agricultural and restored wetland land uses in California's central valley. J. Geophys. Res.: Biogeosci., 125, e2019JG005380, https://doi.org/10.1029/2019JG005380.
Hirdman, D., and Coauthors, 2010: Long-term trends of black carbon and sulphate aerosol in the Arctic: Changes in atmospheric transport and source region emissions. Atmospheric Chemistry and Physics, 10, 9351−9368, https://doi.org/10.5194/acp-10-9351-2010.
Hoesly, R. M., and Coauthors, 2018: Historical (1750−2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geoscientific Model Development, 11, 369−408, https://doi.org/10.5194/gmd-11-369-2018.
Huang, J. B., and Coauthors, 2017: Recently amplified arctic warming has contributed to a continual global warming trend. Nature Climate Change, 7, 875−879, https://doi.org/10.1038/s41558-017-0009-5.
Jung, M., M. Reichstein, and A. Bondeau, 2009: Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6, 2001−2013, https://doi.org/10.5194/bg-6-2001-2009.
Keppel-Aleks, G., and R. A. Washenfelder, 2016: The effect of atmospheric sulfate reductions on diffuse radiation and photosynthesis in the United States during 1995−2013. Geophys. Res. Lett., 43, 9984−9993, https://doi.org/10.1002/2016GL070052.
Law, K. S., and A. Stohl, 2007: Arctic air pollution: Origins and impacts. Science, 315, 1537−1540, https://doi.org/10.1126/science.1137695.
Lawrence, D. M., and S. C. Swenson, 2011: Permafrost response to increasing Arctic shrub abundance depends on the relative influence of shrubs on local soil cooling versus large-scale climate warming. Environmental Research Letters, 6, 045504, https://doi.org/10.1088/1748-9326/6/4/045504.
Liu, H., and Coauthors, 2013: Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia. Global Change Biology, 19, 2500−2510, https://doi.org/10.1111/gcb.12217.
Luo, X. Z., and Coauthors, 2018: Comparison of big-leaf, two-big-leaf, and two-leaf upscaling schemes for evapotranspiration estimation using coupled carbon-water modeling. J. Geophys. Res.: Biogeosci., 123, 207−225, https://doi.org/10.1002/2017JG003978.
Ma, W., J. L. Ding, J. L. Wang, and J. Y. Zhang, 2022: Effects of aerosol on terrestrial gross primary productivity in Central Asia. Atmos. Environ., 288, 119294, https://doi.org/10.1016/j.atmosenv.2022.119294.
Mahmood, R., K. von Salzen, A.-L. Norman, M. Galí, and M. Levasseur, 2019: Sensitivity of Arctic sulfate aerosol and clouds to changes in future surface seawater dimethylsulfide concentrations. Atmospheric Chemistry and Physics, 19, 6419−6435, https://doi.org/10.5194/acp-19-6419-2019.
Malavelle, F. F., J. M. Haywood, L. M. Mercado, G. A. Folberth, N. Bellouin, S. Sitch, and P. Artaxo, 2019: Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon rainforest productivity with an Earth system model. Atmospheric Chemistry and Physics, 19, 1301−1326, https://doi.org/10.5194/acp-19-1301-2019.
Markowicz, K. M., J. Lisok, and P. Xian, 2017: Simulations of the effect of intensive biomass burning in July 2015 on Arctic radiative budget. Atmos. Environ., 171, 248−260, https://doi.org/10.1016/j.atmosenv.2017.10.015.
McCarty, J. L., and Coauthors, 2021: Reviews and syntheses: Arctic fire regimes and emissions in the 21st century. Biogeosciences, 18, 5053−5083, https://doi.org/10.5194/bg-18-5053-2021.
McGuire, A. D., and Coauthors, 2009: Sensitivity of the carbon cycle in the Arctic to climate change. Ecological Monographs, 79, 523−555, https://doi.org/10.1890/08-2025.1.
Mercado, L. M., N. Bellouin, S. Sitch, O. Boucher, C. Huntingford, M. Wild, and P. M. Cox, 2009: Impact of changes in diffuse radiation on the global land carbon sink. Nature, 458, 1014−1017, https://doi.org/10.1038/nature07949.
Monjardino, J., L. Dias, P. Fortes, H. Tente, F. Ferreira, and J. Seixas, 2021: Carbon neutrality pathways effects on air pollutant emissions: The portuguese case. Atmosphere, 12, 324, https://doi.org/10.3390/atmos12030324.
Moosmüller, H., R. K. Chakrabarty, and W. P. Arnott, 2009: Aerosol light absorption and its measurement: A review. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 844−878, https://doi.org/10.1016/j.jqsrt.2009.02.035.
O’Sullivan, M., and Coauthors, 2021: Aerosol–light interactions reduce the carbon budget imbalance. Environmental Research Letters, 16, 124072, https://doi.org/10.1088/1748-9326/ac3b77.
Pan, S. F., and Coauthors, 2020: Larger sensitivity of arctic precipitation phase to aerosol than greenhouse gas forcing. Geophys. Res. Lett., 47, e2020GL090452, https://doi.org/10.1029/2020GL090452.
Piao, S., and Coauthors, 2013: Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Global Change Biology, 19, 2117−2132, https://doi.org/10.1111/gcb.12187.
Rap, A., and Coauthors, 2018: Enhanced global primary production by biogenic aerosol via diffuse radiation fertilization. Nature Geoscience, 11, 640−644, https://doi.org/10.1038/s41561-018-0208-3.
Running, S. W., 2006: Is global warming causing more, larger wildfires? Science, 313, 927−928, https://doi.org/10.1126/science.1130370.
Saugier, B., J. Roy, and H. A. Mooney, 2001: Estimations of global terrestrial productivity: Converging toward a single number?. Terrestrial Global Productivity, J. Roy, B. Saugier, and H. A. Mooney, Eds., Academic Press, 543−557.
Spitters, C. J. T., H. A. J. M. Toussaint, and J. Goudriaan, 1986: Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis Part I. Components of incoming radiation. Agricultural and Forest Meteorology, 38, 217−229, https://doi.org/10.1016/0168-1923(86)90060-2.
Stohl, A., 2006: Characteristics of atmospheric transport into the Arctic troposphere. J. Geophys. Res.: Atmos., 111, D11306, https://doi.org/10.1029/2005JD006888.
Strada, S., and N. Unger, 2016: Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution. Atmospheric Chemistry and Physics, 16, 4213−4234, https://doi.org/10.5194/acp-16-4213-2016.
Streets, D. G., and Coauthors, 2009: Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980-2006. J. Geophys. Res.: Atmos., 114, D00D18, https://doi.org/10.1029/2008JD011624.
Tao, M. H., L. L. Wang, L. F. Chen, Z. F. Wang, and J. H. Tao, 2020: Reversal of aerosol properties in Eastern China with rapid decline of anthropogenic emissions. Remote Sensing, 12, 523, https://doi.org/10.3390/rs12030523.
Thackeray, C. W., and A. Hall, 2019: An emergent constraint on future Arctic sea-ice albedo feedback. Nature Climate Change, 9, 972−978, https://doi.org/10.1038/s41558-019-0619-1.
Tian, C. G., and Coauthors, 2022: Fire–climate interactions through the aerosol radiative effect in a global chemistry–climate–vegetation model. Atmospheric Chemistry and Physics, 22, 12 353−12 366, https://doi.org/10.5194/acp-22-12353-2022.
Urban, M., M. Forkel, J. Eberle, C. Hüttich, C. Schmullius, and M. Herold, 2014: Pan-Arctic climate and land cover trends derived from multi-variate and multi-scale analyses (1981−2012). Remote Sensing, 6, 2296−2316, https://doi.org/10.3390/rs6032296.
Veraverbeke, S., C. J. F. Delcourt, E. Kukavskaya, M. Mack, X. Walker, T. Hessilt, B. Rogers, and R. C. Scholten, 2021: Direct and longer-term carbon emissions from arctic-boreal fires: A short review of recent advances. Current Opinion in Environmental Science & Health, 23, 100277, https://doi.org/10.1016/J.COESH.2021.100277.
Vinogradova, A. A., and T. Y. Ponomareva, 2012: Atmospheric transport of anthropogenic impurities to the Russian arctic (1986−2010). Atmospheric and Oceanic Optics, 25, 414−422, https://doi.org/10.1134/S1024856012060127.
Walker, X. J., and Coauthors, 2019: Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature, 572, 520−523, https://doi.org/10.1038/s41586-019-1474-y.
Wang, X., and Coauthors, 2021: Intermediate aerosol loading enhances photosynthetic activity of croplands. Geophys. Res. Lett., 48, e2020GL091893, https://doi.org/10.1029/2020GL091893.
Willis, M. D., W. R. Leaitch, and J. P. D. Abbatt, 2018: Processes controlling the composition and abundance of Arctic aerosol. Rev. Geophys., 56, 621−671, https://doi.org/10.1029/2018RG000602.
Xie, S. C., X. H, Liu, C. F. Zhao, and Y. Y. Zhang, 2013: Sensitivity of CAM5-simulated arctic clouds and radiation to ice nucleation parameterization. J. Climate, 26, 5981−5999, https://doi.org/10.1175/JCLI-D-12-00517.1.
Yang, X. C., C. F. Zhao, Y. K. Yang, and H. Fan, 2021: Long-term multi-source data analysis about the characteristics of aerosol optical properties and types over Australia. Atmospheric Chemistry and Physics, 21, 3803−3825, https://doi.org/10.5194/acp-21-3803-2021.
Yu, H. B., and Coauthors, 2013: A multimodel assessment of the influence of regional anthropogenic emission reductions on aerosol direct radiative forcing and the role of intercontinental transport. J. Geophys. Res.: Atmos., 118, 700−720, https://doi.org/10.1029/2012JD018148.
Yue, X., and N. Unger, 2015: The Yale Interactive terrestrial Biosphere model version 1.0: Description, evaluation and implementation into NASA GISS ModelE2. Geoscientific Model Development, 8, 2399−2417, https://doi.org/10.5194/gmd-8-2399-2015.
Yue, X., and N. Unger, 2017: Aerosol optical depth thresholds as a tool to assess diffuse radiation fertilization of the land carbon uptake in China. Atmospheric Chemistry and Physics, 17, 1329−1342, https://doi.org/10.5194/acp-17-1329-2017.
Yue, X., and N. Unger, 2018: Fire air pollution reduces global terrestrial productivity. Nature Communications, 9, 5413, https://doi.org/10.1038/s41467-018-07921-4.
Yue, X., T. Y. Zhang, and C. L. Shao, 2021: Afforestation increases ecosystem productivity and carbon storage in China during the 2000s. Agricultural and Forest Meteorology, 296, 108227, https://doi.org/10.1016/j.agrformet.2020.108227.
Yue, X., L. J. Mickley, J. A. Logan, and J. O. Kaplan, 2013: Ensemble projections of wildfire activity and carbonaceous aerosol concentrations over the western United States in the mid-21st century. Atmos. Environ., 77, 767−780, https://doi.org/10.1016/j.atmosenv.2013.06.003.
Zhang, L. S., C. S. Lee, R. Q. Zhang, and L. F. Chen, 2017: Spatial and temporal evaluation of long term trend (2005−2014) of OMI retrieved NO2 and SO2 concentrations in Henan Province, China. Atmos. Environ., 154, 151−166, https://doi.org/10.1016/j.atmosenv.2016.11.067.
Zhang, Y., and Coauthors, 2021: Disentangling the impacts of anthropogenic aerosols on terrestrial carbon cycle during 1850−2014. Earth's Future, 9, e2021EF002035, https://doi.org/10.1029/2021EF002035.
Zheng, B., and Coauthors, 2018: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions. Atmospheric Chemistry and Physics, 18, 14 095−14 111, https://doi.org/10.5194/acp-18-14095-2018.
Zhou, H., X. Yue, Y. D. Lei, C. G. Tian, Y. M. Ma, and Y. Cao, 2021a: Large contributions of diffuse radiation to global gross primary productivity during 1981−2015. Global Biogeochemical Cycles, 35, e2021GB006957, https://doi.org/10.1029/2021GB006957.
Zhou, H., X. Yue, Y. D. Lei, C. G. Tian, Y. M. Ma, and Y. Cao, 2021b: Aerosol radiative and climatic effects on ecosystem productivity and evapotranspiration. Current Opinion in Environmental Science & Health, 19, 100218, https://doi.org/10.1016/j.coesh.2020.10.006.