Adler, R. F., and Coauthors, 2003: The version-2 global precipitation climatology Project (GPCP) Monthly precipitation analysis (1979-Present). Journal of Hydrometeorology, 4, 1147−1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.
Chen, X. L., Z. Guo, T. J. Zhou, J. Li, X. Y. Rong, Y. F. Xin, H. M. Chen, and J. Z. Su, 2019: Climate sensitivity and feedbacks of a new coupled model CAMS-CSM to idealized CO2 forcing: A comparison with CMIP5 models. J. Meteor. Res., 33, 31−45, https://doi.org/10.1007/s13351-019-8074-5.
Dai, Y. J., and Coauthors, 2003: The common land model. Bull. Amer. Meteor. Soc., 84, 1013−1024, https://doi.org/10.1175/BAMS-84-8-1013.
Dai, Y. J., R. E. Dickinson, and Y. P. Wang, 2004: A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J. Climate, 17, 2281−2299, https://doi.org/10.1175/1520-0442(2004)017<2281:ATMFCT>2.0.CO;2.
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6(CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937−1958, https://doi.org/10.5194/gmd-9-1937-2016.
Griffies, S. M., M. J. Harrison, P. C. Pacanowski, and A. Rosati, 2004: A technical guide to MOM4. GFDL Ocean Group Technical Report No.5, 339 pp.
Guo, Y. Y., Y. Q. Yu, P. F. Lin, H. L. Liu, B. He, Q. Bao, S. W. Zhao, and X. W. Wang, 2020: Overview of the CMIP6 historical experiment datasets with the climate system model CAS FGOALS-f3-L. Adv. Atmos. Sci., 37, 1057−1066, https://doi.org/10.1007/s00376-020-2004-4.
Hua, L. J., L. Chen, X. Y. Rong, J. Li, G. Zhang, and L. Wang, 2019: An assessment of ENSO stability in CAMS climate system model simulations. J. Meteor. Res., 33, 80−88, https://doi.org/10.1007/s13351-018-8092-8.
Hunke, E. C., and J. K. Dukowicz, 1997: An elastic-viscous- plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 1849−1867, https://doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2.
Kobayashi, C., and T. Iwasaki, 2016: Brewer-Dobson circulation diagnosed from JRA-55. J. Geophys. Res.: Atmos., 121, 1493−1510, https://doi.org/10.1002/2015JD023476.
Levitus, S., and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994. NOAA Atlas NESDIS 4, U.S. Department of Commerce, NOAA, NESDIS, Washington.
Lu, B., and H. L. Ren, 2019: ENSO features, dynamics, and teleconnections to East Asian climate as simulated in CAMS-CSM. J. Meteor. Res., 33, 46−65, https://doi.org/10.1007/s13351-019-8101-6.
Meinshausen, M., and Coauthors, 2017: Historical greenhouse gas concentrations for climate modelling (CMIP6). Geoscientific Model Development, 10, 2057−2116, https://doi.org/10.5194/gmd-10-2057-2017.
Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res.: Atmos., 117, D08101, https://doi.org/10.1029/2011JD017187.
Nan, S. L., J. L. Yang, Y. Bao, J. Li, and X. Y. Rong, 2019: Simulation of the northern and southern hemisphere annular modes by CAMS-CSM. J. Meteor. Res., 33, 934−948, https://doi.org/10.1007/s13351-019-8099-9.
Niu, G. Y., and Z. L. Yang, 2006: Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. Journal of Hydrometeorology, 7, 937−952, https://doi.org/10.1175/JHM538.1.
Osborn, T. J., and P. D. Jones, 2014: The CRUTEM4 land-surface air temperature data set: Construction, previous versions and dissemination via Google Earth. Earth System Science Data, 6, 61−68, https://doi.org/10.5194/essd-6-61-2014.
Qi, Y. J., R. H. Zhang, X. Y. Rong, J. Li, and L. Li, 2019: Boreal summer intraseasonal oscillation in the Asian-Pacific monsoon region simulated in CAMS-CSM. J. Meteor. Res., 33, 66−79, https://doi.org/10.1007/s13351-019-8080-7.
Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos., 108, 4407, https://doi.org/10.1029/2002JD002670.
Ren, P. F., L. Gao, H. L. Ren, X. Y. Rong, and J. Li, 2019: Representation of the Madden-Julian Oscillation in CAMS-CSM. J. Meteor. Res., 33, 627−650, https://doi.org/10.1007/s13351-019-8118-x.
Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5: Part I: Model description. Tech Rep No 349, Max-Planck-Institut für Meteorologie, Hamburg, Germany, 127 pp.
Rong, X. Y., and Coauthors, 2018: The CAMS climate system model and a basic evaluation of its climatology and climate variability simulation. J. Meteor. Res., 32(6), 839−861, https://doi.org/10.1007/s13351-018-8058-x.
Steven, B., S. Fiedler, S. Kinne, K. Peters, S. Rast, J. Müsse, S. J. Smith, and T. Mauritsen, 2016: Simple Plumes: A parameterization of anthropogenic aerosol optical properties and an associated Twomey effect for climate studies. Geoscientific Model Development Discussions, https://doi.org/10.5194/gmd-2016-189.
Wang, L., T. J. Zhou, J. Li, X. Y. Rong, H. M. Chen, Y. F. Xin, and J. Z. Su, 2019: Convectively coupled equatorial waves simulated by CAMS-CSM. J. Meteor. Res., 33, 949−959, https://doi.org/10.1007/s13351-019-9021-1.
Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos. Oceanic Technol., 17, 525−531, https://doi.org/10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2.
Yu, R. C., 1994: A two-step shape-preserving advection scheme. Adv. Atmos. Sci., 11, 479−490, https://doi.org/10.1007/BF02658169.
Zhang, B., Z. Guo, X. L. Chen, T. J. Zhou, X. Y. Rong, and J. Li, 2020: Responses of cloud-radiative forcing to strong El Niño events over the western Pacific warm pool as simulated by CAMS-CSM. J. Meteor. Res., 34, 499−514, https://doi.org/10.1007/s13351-020-9161-3.
Zhang, G., J. D. Li, X. Y. Rong, Y. F. Xin, J. Li, H. M. Chen, J. Z. Su, and L. J. Hua, 2018: An assessment of CAMS-CSM in simulating land-atmosphere heat and water exchanges. J. Meteor. Res., 32, 862−880, https://doi.org/10.1007/s13351-018-8055-0.
Zhang, H., T. Nakajima, G. Y. Shi, T. Suzuki, and R. Imasu, 2003: An optimal approach to overlapping bands with correlated k-distribution method and its application to radiative calculations. J. Geophys. Res. Atmos., 108(D20), 4641, https://doi.org/10.1029/2002JD003358.
Zhang, H., G. Y. Shi, T. Nakajima, and T. Suzuki, 2006a: The effects of the choice of the k-interval number on radiative calculations. Journal of Quantitative Spectroscopy and Radiative Transfer, 98, 31−43, https://doi.org/10.1016/j.jqsrt.2005.05.090.
Zhang, H., T. Suzuki, T. Nakajima, G. Y. Shi, X. Y. Zhang, and Y. Liu, 2006b: Effects of band division on radiative calculations. Optical Engineering, 45, 016002, https://doi.org/10.1117/1.2160521.
Zhang, X. X., H. L. Liu, and M. H. Zhang, 2015: Double ITCZ in coupled ocean-atmosphere models: From CMIP3 to CMIP5. Geophys. Res. Lett., 42, 8651−8659, https://doi.org/10.1002/2015GL065973.
Zhang, Y., R. C. Yu, J. Li, and H. M. Chen, 2013: An implementation of a leaping-point Two-step Shape-Preserving Advection Scheme in the high-resolution spherical latitude-longitude grid. Acta Meteorologica Sinica, 71, 1089−1102, https://doi.org/10.11676/qxxb2013.085.(inChinesewithEnglishabstract). (in Chinese with English abstract)
Zhou, T. J., and Coauthors, 2020: Development of Climate and Earth System Models in China: Past achievements and new CMIP6 results. J. Meteor. Res., 34(1), 1−19, https://doi.org/10.1007/s13351-020-9164-0.