Bender, F. A.-M., V. Ramanathan, and G. Tselioudis, 2012: Changes in extratropical storm track cloudiness 1983-2008: Observational support for a poleward shift. Climate Dyn., 38, 2037−2053, https://doi.org/10.1007/s00382-011-1065-6.
Bony, S., J. L. Dufresne, H. Le Treut, J. J. Morcrette, and C. Senior, 2004: On dynamic and thermodynamic components of cloud changes. Climate Dyn., 22, 71−86, https://doi.org/10.1007/s00382-003-0369-6.
Ceppi, P., D. T. McCoy, and D. L. Hartmann, 2016: Observational evidence for a negative shortwave cloud feedback in middle to high latitudes. Geophys. Res. Lett., 43, 1331−1339, https://doi.org/10.1002/2015GL067499.
Ceppi, P., F. Brient, M. D. Zelinka, and D. L. Hartmann, 2017: Cloud feedback mechanisms and their representation in global climate models. WIREs Climate Change, 8, e465, https://doi.org/10.1002/wcc.465.
Colman, R., and L. Hanson, 2017: On the relative strength of radiative feedbacks under climate variability and change. Climate Dyn., 49, 2115−2129, https://doi.org/10.1007/s00382-016-3441-8.
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteorol. Soc., 137, 553−597, https://doi.org/10.1002/qj.828.
Dessler, A. E., 2010: A determination of the cloud feedback from climate variations over the past decade. Science, 330, 1523−1527, https://doi.org/10.1126/science.1192546.
Dessler, A. E., 2013: Observations of climate feedbacks over 2000-10 and comparisons to climate models. J. Climate, 26, 333−342, https://doi.org/10.1175/JCLI-D-11-00640.1.
Dessler, A. E., and N. G. Loeb, 2013: Impact of dataset choice on calculations of the short-term cloud feedback. J. Geophys. Res. Atmos., 118, 2821−2826, https://doi.org/10.1002/jgrd.50199.
Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 2139−2156, https://doi.org/10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2.
GISTEMP-Team, 2019: GISS Surface Temperature Analysis (GISTEMP v4), version 4. [Available online from https://data.giss.nasa.gov/gistemp/]
Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annual Review of Energy and the Environment, 25, 441−475, https://doi.org/10.1146/annurev.energy.25.1.441.
IPCC, 2014: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 580−590.
Klein, S. A., and C. Jakob, 1999: Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon. Wea. Rev., 127, 2514−2531, https://doi.org/10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2.
Lenssen, N. J. L., G. A. Schmidt, J. E. Hansen, M. J. Menne, A. Persin, R. Ruedy, and D. Zyss, 2019: Improvements in the GISTEMP uncertainty model. J. Geophys. Res. Atmos., 124, 6307−6326, https://doi.org/10.1029/2018JD029522.
Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the earth's top-of-atmosphere radiation budget. J. Climate, 22, 748−766, https://doi.org/10.1175/2008JCLI2637.1.
Lu, P., H. Zhang, and J. N. Li, 2011: Correlated k-distribution treatment of cloud optical properties and related radiative impact. J. Atmos. Sci., 68, 2671−2688, https://doi.org/10.1175/JAS-D-10-05001.1.
Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon et al., Eds., Cambridge University Press, 747−843.
Nakajima, T., M. Tsukamoto, Y. Tsushima, A. Numaguti, and T. Kimura, 2000: Modeling of the radiative process in an atmospheric general circulation model. Appl. Opt., 39, 4869−4878, https://doi.org/10.1364/AO.39.004869.
Parkinson, C. L., 2003: Aqua: An Earth-Observing Satellite mission to examine water and other climate variables. IEEE Trans. Geosci. Remote Sens., 41, 173−183, https://doi.org/10.1109/TGRS.2002.808319.
Platnick, S., M. King, and P. Hubanks, 2017: MODIS Atmosphere L3 Monthly Product. NASA MODIS Adaptive Processing System, Goddard Space Flight Center. [Available online from http://dx.doi.org/10.5067/MODIS/MOD08_M3.006].
Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteorol. Soc., 80, 2261−2288, https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.
Senior, C. A., and J. F. B. Mitchell, 1993: Carbon dioxide and climate. The impact of cloud parameterization. J. Climate, 6, 393−418, https://doi.org/10.1175/1520-0442(1993)006<0393:CDACTI>2.0.CO;2.
Sherwood, S. C., W. Ingram, Y. Tsushima, M. Satoh, M. Roberts, P. L. Vidale, and P. A. O'Gorman, 2010: Relative humidity changes in a warmer climate. J. Geophys. Res. Atmos., 115, https://doi.org/10.1029/2009JD012585.
Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean -atmosphere models. J. Climate, 19, 3354−3360, https://doi.org/10.1175/JCLI3799.1.
Tsushima, Y., and Coauthors, 2006: Importance of the mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: A multi-model study. Climate Dyn., 27, 113−126, https://doi.org/10.1007/s00382-006-0127-7.
Vavrus, S., D. Waliser, A. Schweiger, and J. Francis, 2009: Simulations of 20th and 21st century Arctic cloud amount in the global climate models assessed in the IPCC AR4. Climate Dyn., 33, 1099−1115, https://doi.org/10.1007/s00382-008-0475-6.
Vial, J., J.-L. Dufresne, and S. Bony, 2013: On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Climate Dyn., 41, 3339−3362, https://doi.org/10.1007/s00382-013-1725-9.
Wang, F., X. G. Xin, Z. Z. Wang, Y. J. Cheng, J. Zhang, and S. Yang, 2014: Evaluation of cloud vertical structure simulated by recent BCC_AGCM versions through comparison with CALIPSO-GOCCP data. Adv. Atmos. Sci., 31, 721−733, https://doi.org/10.1007/s00376-013-3099-7.
Webb, M., C. Senior, S. Bony, and J.-J. Morcrette, 2001: Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Climate Dyn., 17, 905−922, https://doi.org/10.1007/s003820100157.
Webb, M. J., and Coauthors, 2017: The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6. Geoscientific Model Development, 10, 359−384, https://doi.org/10.5194/gmd-10-359-2017.
Wei, X. D., and H. Zhang, 2011: Analysis of optical properties of nonspherical dust aerosols. Acta Optica Sinica, 31, 0501002, https://doi.org/10.3788/AOS201131.0501002. (in Chinese with English abstract)
Wetherald, R. T., and S. Manabe, 1980: Cloud cover and climate sensitivity. J. Atmos. Sci., 37, 1485−1510, https://doi.org/10.1175/1520-0469(1980)037<1485:CCACS>2.0.CO;2.
Williams, K. D., and M. J. Webb, 2009: A quantitative performance assessment of cloud regimes in climate models. Climate Dyn., 33, 141−157, https://doi.org/10.1007/s00382-008-0443-1.
Yu, R. C., Y. Q. Yu, and M. H. Zhang, 2001: Comparing cloud radiative properties between the Eastern China and the Indian monsoon region. Adv. Atmos. Sci., 18, 1090−1102, https://doi.org/10.1007/s00376-001-0025-1.
Yue, Q., B. H. Kahn, E. J. Fetzer, M. Schreier, S. Wong, X. H. Chen, and X. L. Huang, 2016: Observation-based longwave cloud radiative kernels derived from the A-Train. J. Climate, 29, 2023−2040, https://doi.org/10.1175/JCLI-D-15-0257.1.
Yue, Q., B. H. Kahn, E. J. Fetzer, S. Wong, R. Frey, and K. G. Meyer, 2017: On the response of MODIS cloud coverage to global mean surface air temperature. J. Geophys. Res. Atmos., 122, 966−979, https://doi.org/10.1002/2016JD025174.
Yue, Q., B. H. Kahn, E. J. Fetzer, S. Wong, X. L. Huang, and M. Schreier, 2019: Temporal and spatial characteristics of short-term cloud feedback on global and local interannual climate fluctuations from A-Train observations. J. Climate, 32, 1875−1893, https://doi.org/10.1175/JCLI-D-18-0335.1.
Zelinka, M. D., C. Zhou, and S. A. Klein, 2016: Insights from a refined decomposition of cloud feedbacks. Geophys. Res. Lett., 43, 9259−9269, https://doi.org/10.1002/2016GL069917.
Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012a: Computing and partitioning cloud feedbacks using cloud property histograms. Part I: Cloud radiative kernels. J. Climate, 25, 3715−3735, https://doi.org/10.1175/JCLI-D-11-00248.1.
Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012b: Computing and partitioning cloud feedbacks using cloud property histograms. Part II: Attribution to changes in cloud amount, altitude, and optical depth. J. Climate, 25, 3736−3754, https://doi.org/10.1175/JCLI-D-11-00249.1.
Zhang, H., 2016: Atmospheric Radiative Transfer Model of BCC_RAD. China Meteorological Press, 205 pp. (in Chinese)
Zhang, H., T. Nakajima, G. Y. Shi, T. Suzuki, and R. Imasu, 2003: An optimal approach to overlapping bands with correlated k distribution method and its application to radiative calculations. J. Geophys. Res. Atmos., 108, 4641, https://doi.org/10.1029/2002JD003358.
Zhang, H., Q. Chen, and B. Xie, 2015: A new parameterization for ice cloud optical properties used in BCC-RAD and its radiative impact. Journal of Quantitative Spectroscopy and Radiative Transfer, 150, 76−86, https://doi.org/10.1016/j.jqsrt.2014.08.024.
Zhou, C., A. E. Dessler, M. D. Zelinka, P. Yang, and T. Wang, 2014: Cirrus feedback on interannual climate fluctuations. Geophys. Res. Lett., 41, 9166−9173, https://doi.org/10.1002/2014GL062095.
Zhou, C., H. Zhang, and Z. L. Wang, 2013a: Impact of different mixing ways of black carbon and non-absorbing aerosols on the optical properties. Acta Optica Sinica, 33, 0829001, https://doi.org/10.3788/AOS201333.0829001. (in Chinese with English abstract)
Zhou, C., M. D. Zelinka, A. E. Dessler, and P. Yang, 2013b: An analysis of the short-term cloud feedback using MODIS data. J. Climate, 26, 4803−4815, https://doi.org/10.1175/JCLI-D-12-00547.1.
Zhou, C., M. D. Zelinka, A. E. Dessler, and S. A. Klein, 2015: The relationship between interannual and long-term cloud feedbacks. Geophys. Res. Lett., 42, 10 463−10 469, https://doi.org/10.1002/2015GL066698.
Zhu, T. T., Y. Huang, and H. K. Wei, 2019: Estimating climate feedbacks using a neural network. J. Geophys. Res. Atmos., 124, 3246−3258, https://doi.org/10.1029/2018JD029223.