Alemohammad, S. H., and Coauthors, 2017: Water, Energy, and Carbon with Artificial Neural Networks (WECANN): A statistically-based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence. Biogeosciences, 14, 4101−4124, https://doi.org/10.5194/bg-14-4101-2017.
Bastrikov, V., N. MacBean, C. Bacour, D. Santaren, S. Kuppel, and P. Peylin, 2018: Land surface model parameter optimisation using in situ flux data: Comparison of gradient-based versus random search algorithms (a case study using ORCHIDEE v1.9.5.2). Geoscientific Model Development, 11, 4739−4754, https://doi.org/10.5194/gmd-11-4739-2018.
Chen, A. P., L. Huang, Q. Liu, and S. Piao, 2021: Optimal temperature of vegetation productivity and its linkage with climate and elevation on the Tibetan Plateau. Global Change Biology, 27, 1942−1951, https://doi.org/10.1111/gcb.15542.
Chen, J., 1984: Uncoupled multi-layer model for the transfer of sensible and latent heat flux densities from vegetation. Bound.-Layer Meteorol., 28, 213−225, https://doi.org/10.1007/bf00121305.
Chen, Y. Y., K. Yang, J. He, J. Qin, J. C. Shi, J. Y. Du, and Q. He, 2011: Improving land surface temperature modeling for dry land of China. J. Geophys. Res.: Atmos., 116, D20104, https://doi.org/10.1029/2011jd015921.
Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry, 1991: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agricultural And Forest Meteorology, 54, 107−136, https://doi.org/10.1016/0168-1923(91)90002-8.
Collatz, G. J., L. Bounoua, S. O. Los, D. A. Randall, I. Y. Fung, and P. J. Sellers, 2000: A mechanism for the influence of vegetation on the response of the diurnal temperature range to changing climate. Geophys. Res. Lett., 27, 3381−3384, https://doi.org/10.1029/1999gl010947.
Cox, P., and C. Jones, 2008: Illuminating the modern dance of climate and CO2. Science, 321, 1642−1644, https://doi.org/10.1126/science.1158907.
Cox, P. M., C. Huntingford, and R. J. Harding, 1998: A canopy conductance and photosynthesis model for use in a GCM land surface scheme. J. Hydrol., 212−213, 79−94,
Dan, L., X. J. Yang, F. Q. Yang, J. Peng, Y. Y. Li, D. D. Gao, J. J. Ji, and M. Huang, 2020: Integration of nitrogen dynamics into the land surface model AVIM. Part 2: Baseline data and variation of carbon and nitrogen fluxes in China. Atmospheric and Oceanic Science Letters, 13, 518−526, https://doi.org/10.1080/16742834.2020.1819145.
De Kauwe, M. G., and Coauthors, 2015: A test of an optimal stomatal conductance scheme within the CABLE land surface model. Geoscientific Model Development, 8, 431−452, https://doi.org/10.5194/gmd-8-431-2015.
Dong, Z. B., S. Y. Gao, and D. W. Fryrear, 2001: Drag coefficients, roughness length and zero-plane displacement height as disturbed by artificial standing vegetation. Journal of Arid Environments, 49, 485−505, https://doi.org/10.1006/jare.2001.0807.
Duan, Q., and Coauthors, 2006: Model Parameter Estimation Experiment (MOPEX): An overview of science strategy and major results from the second and third workshops. J. Hydrol., 320, 3−17, https://doi.org/10.1016/j.jhydrol.2005.07.031.
Giambelluca, T. W., D. Hölscher, T. X. Bastos, R. R. Frazão, M. A. Nullet, and A. D. Ziegler, 1997: Observations of albedo and radiation balance over postforest land surfaces in the eastern Amazon Basin. J. Climate, 10, 919−928, https://doi.org/10.1175/1520-0442(1997)010<0919:Ooaarb>2.0.Co;2.
Goudriaan, J., and P. E. Waggoner, 1972: Simulating both aerial microclimate and soil temperature from observations above the foliar canopy. Netherlands Journal of Agricultural Science, 20, 104−124, https://doi.org/10.18174/njas.v20i2.17290.
Guo, D. L., and H. J. Wang, 2013: Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981-2010,. J. Geophys. Res.: Atmos., 118, 5216−5230, https://doi.org/10.1002/jgrd.50457.
He, J., K. Yang, W. J. Tang, H. Lu, J. Qin, Y. Y. Chen, and X. Li, 2020: The first high-resolution meteorological forcing dataset for land process studies over China. Scientific Data, 7, 25, https://doi.org/10.1038/s41597-020-0369-y.
Immerzeel, W. W., L. P. H. van Beek, and M. F. P. Bierkens, 2010: Climate change will affect the Asian water towers. Science, 328, 1382−1385, https://doi.org/10.1126/science.1183188.
Jeong, S.-J., C.-H. Ho, H.-J. Gim, and M. E. Brown, 2011: Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008,. Global Change Biology, 17, 2385−2399, https://doi.org/10.1111/j.1365-2486.2011.02397.x.
Jung, M., and Coauthors, 2007: Uncertainties of modeling gross primary productivity over Europe: A systematic study on the effects of using different drivers and terrestrial biosphere models. Global Biogeochemical Cycles, 21, GB4021, https://doi.org/10.1029/2006gb002915.
Jung, M., and Coauthors, 2017: Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature, 541, 516−520, https://doi.org/10.1038/nature20780.
Lan, X., Y. Li, R. Shao, X. H. Chen, K. R. Lin, L. Y. Cheng, H. K. Gao, and Z. Y. Liu, 2021: Vegetation controls on surface energy partitioning and water budget over China. J. Hydrol., 600, 125646, https://doi.org/10.1016/j.jhydrol.2020.125646.
Li, C. W., and Coauthors, 2018: The evaluation of SMAP enhanced soil moisture products using high-resolution model simulations and in-situ observations on the Tibetan Plateau. Remote Sensing, 10, 535, https://doi.org/10.3390/rs10040535.
Li, H. Q., W. D. Guo, G. D. Sun, Y. C. Zhang, and C. B. Fu, 2011: A new approach for parameter optimization in land surface model. Adv. Atmos. Sci., 28, 1056−1066, https://doi.org/10.1007/s00376-010-0050-z.
Liang, J. J., Z.-L. Yang, X. T. Cai, P. R. Lin, H. Zheng, and Q. Y. Bian, 2020: Modeling the impacts of nitrogen dynamics on regional terrestrial carbon and water cycles over China with Noah-MP-CN. Adv. Atmos. Sci., 37, 679−695, https://doi.org/10.1007/s00376-020-9231-6.
Liu, J. G., C. X. Shi, S. Sun, J. J. Liang, and Z.-L. Yang, 2019a: Improving land surface hydrological simulations in China using CLDAS meteorological forcing data. J. Meteor. Res., 33, 1194−1206, https://doi.org/10.1007/s13351-019-9067-0.
Liu, L. B., Y. Wang, Z. Wang, D. L. Li, Y. T. Zhang, D. H. Qin, and S. C. Li, 2019b: Elevation-dependent decline in vegetation greening rate driven by increasing dryness based on three satellite NDVI datasets on the Tibetan Plateau. Ecological Indicators, 107, 105569, https://doi.org/10.1016/j.ecolind.2019.105569.
Long, B., B. Q. Zhang, C. S. He, R. Shao, and W. Tian, 2018: Is there a change from a warm-dry to a warm-wet climate in the Inland River area of China? Interpretation and analysis through surface water balance J. Geophys. Res.: Atmos., 123, 7114−7131, https://doi.org/10.1029/2018jd028436.
Lü, J. H., and J. J. Ji, 2002a: A simulation study of atmosphere-vegetation interactions over the Tibetan Plateau. Part Ⅰ: Physical fluxes and parameters. Chinese Journal of Atmospheric Sciences, 26, 111−126, https://doi.org/10.3878/j.issn.1006-9895.2002.01.11. (in Chinese with English abstract
Lü, J. H., and J. J. Ji, 2002b: A simulation study of atmosphere-vegetation interaction over the Tibetan Plateau. Part Ⅱ: Net primary productivity and leaf area index. Chinese Journal of Atmospheric Sciences, 26(2), 255−262, https://doi.org/10.3878/j.issn.1006-9895.2002.02.11. (in Chinese with English abstract
Meng, X., and Coauthors, 2018: Simulated cold bias being improved by using MODIS time-varying albedo in the Tibetan Plateau in WRF model. Environmental Research Letters, 13, 044028, https://doi.org/10.1088/1748-9326/aab44a.
Ran, Y. H., X. Li, L. Lu, and Z. Y. Li, 2012: Large-scale land cover mapping with the integration of multi-source information based on the Dempster–Shafer theory. International Journal of Geographical Information Science, 26, 169−191, https://doi.org/10.1080/13658816.2011.577745.
Ren, Y. H., K. Yang, H. Wang, L. Zhao, Y. Y. Chen, X. Zhou, and Z. La, 2021: The South Asia monsoon break promotes grass growth on the Tibetan Plateau. J. Geophys. Res.: Biogeosci., 126, e2020JG005951, https://doi.org/10.1029/2020jg005951.
Sellers, P. J., Y. Mintz, Y. C. Sud, and A. Dalcher, 1986: A simple biosphere model (SIB) for use within general circulation models. J. Atmos. Sci., 43, 505−531, https://doi.org/10.1175/1520-0469(1986)043<0505:Asbmfu>2.0.Co;2.
Sellers, P. J., and Coauthors, 1996: A revised land surface parameterization (SiB2) for atmospheric GCMS. Part I: Model formulation. J. Climate, 9, 676−705, https://doi.org/10.1175/1520-0442(1996)009<0676:Arlspf>2.0.Co;2.
Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 3088−3111, https://doi.org/10.1175/jcli3790.1.
Shen, M. G., and Coauthors, 2015: Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proceedings of the National Academy of Sciences of the United States of America, 112, 9299−9304, https://doi.org/10.1073/pnas.1504418112.
Su, F. G., X. L. Duan, D. L. Chen, Z. C. Hao, and L. Cuo, 2013: Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J. Climate, 26, 3187−3208, https://doi.org/10.1175/jcli-d-12-00321.1.
Sun, S. B., and Coauthors, 2016: Improving soil organic carbon parameterization of land surface model for cold regions in the Northeastern Tibetan Plateau, China. Ecological Modelling, 330, 1−15, https://doi.org/10.1016/j.ecolmodel.2016.03.014.
Wu, G. X., and Coauthors, 2007: The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. Journal of Hydrometeorology, 8, 770−789, https://doi.org/10.1175/jhm609.1.
Xiao, Z. Q., S. L. Liang, J. D. Wang, P. Chen, X. J. Yin, L. Q. Zhang, and J. L. Song, 2014: Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance. IEEE Trans. Geosci. Remote Sens., 52, 209−223, https://doi.org/10.1109/tgrs.2013.2237780.
Xue, Y., P. J. Sellers, J. L. Kinter, and J. Shukla, 1991: A simplified biosphere model for global climate studies. J. Climate, 4, 345−364, https://doi.org/10.1175/1520-0442(1991)004<0345:Asbmfg>2.0.Co;2.
Yang, K., J. He, W. J. Tang, J. Qin, and C. C. K. Cheng, 2010: On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agricultural and Forest Meteorology, 150, 38−46, https://doi.org/10.1016/j.agrformet.2009.08.004.
Yang, K., Y. Y. Chen, J. He, L. Zhao, H. Lu, J. Qin, D. H. Zheng, and X. Li, 2020: Development of a daily soil moisture product for the period of 2002–2011 in Chinese mainland. Science China Earth Sciences, 63, 1113−1125, https://doi.org/10.1007/s11430-019-9588-5.
Yang, X. J., L. Dan, F. Q. Yang, J. Peng, Y. Y. Li, D. D. Gao, J. J. Ji, and M. Huang, 2019: The integration of nitrogen dynamics into a land surface model. Part 1: Model description and site-scale validation. Atmospheric and Oceanic Science Letters, 12, 50−57, https://doi.org/10.1080/16742834.2019.1548246.
Yu, M., H. S. Chen, and Z. B. Sun, 2011: Seasonal and interannual variations of boreal vegetation simulated by an improved interactive canopy model (ICM). Chinese Journal of Atmospheric Sciences, 35, 571−588, https://doi.org/10.3878/j.issn.1006-9895.2011.03.16. (in Chinese with English abstract
Zhan, X. W., Y. K. Xue, and G. J. Collatz, 2003: An analytical approach for estimating CO2 and heat fluxes over the Amazonian region. Ecological Modelling, 162, 97−117, https://doi.org/10.1016/s0304-3800(02)00405-2.
Zhang, T., and Coauthors, 2018: Water availability is more important than temperature in driving the carbon fluxes of an alpine meadow on the Tibetan Plateau. Agricultural and Forest Meteorology, 256−257, 22−31,
Zhang, Y. Q., and Coauthors, 2016: Multi-decadal trends in global terrestrial evapotranspiration and its components. Scientific Reports, 6, 19124, https://doi.org/10.1038/srep19124.
Zhang, Z. Q., Y. K. Xue, G. MacDonald, P. M. Cox, and G. J. Collatz, 2015: Investigation of North American vegetation variability under recent climate: A study using the SSiB4/TRIFFID biophysical/dynamic vegetation model. J. Geophys. Res.: Atmos., 120, 1300−1321, https://doi.org/10.1002/2014jd021963.
Zhao, W., and A. N. Li, 2015: A review on land surface processes modelling over complex terrain. Advances in Meteorology, 2015, 607181, https://doi.org/10.1155/2015/607181.
Zhong, L., Y. M. Ma, Y. K. Xue, and S. Piao, 2019: Climate change trends and impacts on vegetation greening over the Tibetan Plateau. J. Geophys. Res.: Atmos., 124, 7540−7552, https://doi.org/10.1029/2019jd030481.
Zhu, Z. C., and Coauthors, 2016: Greening of the Earth and its drivers. Nature Climate Change, 6, 791−795, https://doi.org/10.1038/nclimate3004.