Andreas, E. L., and K. A. Emanuel, 2001: Effects of sea spray on tropical cyclone intensity. J. Atmos. Sci., 58(24), 3741−3751, https://doi.org/10.1175/1520-0469(2001)058<3741:EOSSOT>2.0.CO;2.
Bao, J.-W., C. W. Fairall, S. A. Michelson, and L. Bianco, 2011: Parameterizations of sea-spray impact on the air-sea momentum and heat fluxes. Mon. Wea. Rev., 139(12), 3781−3797, https://doi.org/10.1175/MWR-D-11-00007.1.
Barnes, G. M., and K. P. Dolling, 2013: The inflow to tropical cyclone Humberto (2001) as viewed with azimuth-height surfaces over three days. Mon. Wea. Rev., 141(4), 1324−1336, https://doi.org/10.1175/MWR-D-11-00348.1.
Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air-sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69(11), 3197−3222, https://doi.org/10.1175/JAS-D-11-0276.1.
Black, P. G., and Coauthors, 2007: Air-sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air-sea transfer experiment. Bull. Amer. Meteor. Soc., 88(3), 357−374, https://doi.org/10.1175/BAMS-88-3-357.
Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81(350), 639−640, https://doi.org/10.1002/qj.49708135027.
Chen, Y. J., F. Q. Zhang, B. W. Green, and X. P. Yu, 2018: Impacts of ocean cooling and reduced wind drag on Hurricane Katrina (2005) based on numerical simulations. Mon. Wea. Rev., 146(1), 287−306, https://doi.org/10.1175/MWR-D-17-0170.1.
Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31(18), L18306, https://doi.org/10.1029/2004GL019460.
Drennan, W. M., J. A. Zhang, J. R. French, C. McCormick, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat flux. J. Atmos. Sci., 64(4), 1103−1115, https://doi.org/10.1175/JAS3889.1.
Elsberry, R. L., T. S. Fraim, and R. N. Trapnell Jr., 1976: A mixed layer model of the oceanic thermal response to hurricanes. J. Geophys. Res., 81(6), 1153−1162, https://doi.org/10.1029/JC081i006p01153.
Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43(6), 585−605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.
Green, B. W., and F. Q. Zhang, 2013: Impacts of air-sea flux parameterizations on the intensity and structure of tropical cyclones. Mon. Wea. Rev., 141(7), 2308−2324, https://doi.org/10.1175/MWR-D-12-00274.1.
Heng, J. Y., and Y. Q. Wang, 2016: Nonlinear response of a tropical cyclone vortex to prescribed eyewall heating with and without surface friction in TCM4: Implications for tropical cyclone intensification. J. Atmos. Sci., 73(3), 1315−1333, https://doi.org/10.1175/JAS-D-15-0164.1.
Holland, G. J., 1993: The Global Guide to Tropical Cyclone Forecasting. World Meteorological Organization.
Jacob, R., J. Larson, and E. Ong, 2005: M×N communication and parallel interpolation in community climate system model version 3 using the model coupling toolkit. The International Journal of High Performance Computing Applications, 19(3), 293−307, https://doi.org/10.1177/1094342005056116.
Jaimes, B., L. K. Shay, and E. W. Uhlhorn, 2015: Enthalpy and momentum fluxes during Hurricane Earl relative to underlying ocean features. Mon. Wea. Rev., 143(1), 111−131, https://doi.org/10.1175/MWR-D-13-00277.1.
Jeong, D., B. K. Haus, and M. A. Donelan, 2012: Enthalpy transfer across the air-water interface in high winds including spray. J. Atmos. Sci., 69(9), 2733−2748, https://doi.org/10.1175/JAS-D-11-0260.1.
Jordi, A., and D.-P. Wang, 2012: sbPOM: A parallel implementation of Princenton Ocean Model. Environmental Modelling & Software, 38, 59−61, https://doi.org/10.1016/j.envsoft.2012.05.013.
Larson, J., R. Jacob, and E. Ong, 2005: The model coupling toolkit: A new Fortran90 toolkit for building multiphysics parallel coupled models. The International Journal of High Performance Computing Applications, 19(3), 277−292, https://doi.org/10.1177/1094342005056115.
Lin, I.-I., C.-H. Chen, I.-F. Pun, W. T. Liu, and C.-C. Wu, 2009: Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008). Geophys. Res. Lett., 36(3), L03817, https://doi.org/10.1029/2008GL035815.
Liu, B., and C. Guan, 2007: The wave development and sea spray related parametrization of aerodynamic roughness applicable to from low to extreme wind speeds. Proc. Fourth International Ocean-Atmosphere Conf. (COAA2007).
Liu, B., H. Q. Liu, L. Xie, C. L. Guan, and D. L. Zhao, 2011: A coupled atmosphere-wave-ocean modeling system: Simulation of the intensity of an idealized tropical cyclone. Mon. Wea. Rev., 139(1), 132−152, https://doi.org/10.1175/2010MWR3396.1.
Liu, L., J. F. Fei, X. P. Cheng, and X. G. Huang, 2013: Effect of wind-current interaction on ocean response during Typhoon KAEMI (2006). Science China Earth Sciences, 56(3), 418−433, https://doi.org/10.1007/s11430-012-4548-3.
Ming, J., and J. A. Zhang, 2016: Effects of surface flux parameterization on the numerically simulated intensity and structure of Typhoon Morakot (2009). Adv. Atmos. Sci., 33(1), 58−72, https://doi.org/10.1007/s00376-015-4202-z.
Montgomery, M. T., R. K. Smith, and S. V. Nguyen, 2010: Sensitivity of tropical-cyclone models to the surface drag coefficient. Quart. J. Roy. Meteor. Soc., 136(653), 1945−1953, https://doi.org/10.1002/qj.702.
Moon, I.-J., I. Ginis, and T. Hara, 2004: Effect of surface waves on air-sea momentum exchange. Part II: Behavior of drag coefficient under tropical cyclones. J. Atmos. Sci., 61(19), 2334−2348, https://doi.org/10.1175/1520-0469(2004)061<2334:EOSWOA>2.0.CO;2.
Peng, K., R. Rotunno, and G. H. Bryan, 2018: Evaluation of a time-dependent model for the intensification of tropical cyclones. J. Atmos. Sci., 75(6), 2125−2138, https://doi.org/10.1175/JAS-D-17-0382.1.
Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422(6929), 279−283, https://doi.org/10.1038/nature01481.
Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11(2), 153−175, https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.
Richter, D. H., and D. P. Stern, 2014: Evidence of spray-mediated air-sea enthalpy flux within tropical cyclones. Geophys. Res. Lett., 41(8), 2997−3003, https://doi.org/10.1002/2014GL059746.
Shay, L. K., and S. D. Jacob, 2006: Relationship between oceanic energy fluxes and surface winds during tropical cyclone passage. Atmosphere-Ocean Interactions II: Advances in Fluid Mechanics, W. Perrie, Ed., WIT Press, 115−142.
Shay, L. K., P. G. Black, A. J. Mariano, J. D. Hawkins, and R. L. Elsberry, 1992: Upper ocean response to Hurricane Gilbert. J. Geophys. Res., 97(C12), 20 227−20 248,
Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp,
Smith, R. K., and M. T. Montgomery, 2010: Hurricane boundary-layer theory. Quart. J. Roy. Meteor. Soc., 136(652), 1665−1670, https://doi.org/10.1002/qj.679.
Smith, R. K., M. T. Montgomery, and G. L. Thomsen, 2014: Sensitivity of tropical-cyclone models to the surface drag coefficient in different boundary-layer schemes. Quart. J. Roy. Meteor. Soc., 140(680), 792−804, https://doi.org/10.1002/qj.2057.
Stern, D. P., J. L. Vigh, D. S. Nolan, and F. Q. Zhang, 2015: Revisiting the relationship between eyewall contraction and intensification. J. Atmos. Sci., 72(4), 1283−1306, https://doi.org/10.1175/JAS-D-14-0261.1.
Thomsen, G. L., M. T. Montgomery, and R. K. Smith, 2014: Sensitivity of tropical-cyclone intensification to perturbations in the surface drag coefficient. Quart. J. Roy. Meteor. Soc., 140(679), 407−415, https://doi.org/10.1002/qj.2048.
Vickery, P. J., D. Wadhera, M. D. Powell, and Y. Z. Chen, 2009: A hurricane boundary layer and wind field model for use in engineering applications. J. Appl. Meteor. Climatol., 48(2), 381−405, https://doi.org/10.1175/2008JAMC1841.1.
Wada, A., S. Kanada, and H. Yamada, 2018: Effect of air-sea environmental conditions and interfacial processes on extremely intense typhoon Haiyan (2013). J. Geophys. Res., 123(18), 10 379−10 405,
Wadler, J. B., J. A. Zhang, B. Jaimes, and L. K. Shay, 2018: Downdrafts and the evolution of boundary layer thermodynamics in Hurricane Earl (2010) before and during rapid intensification. Mon. Wea. Rev., 146(11), 3545−3565, https://doi.org/10.1175/MWR-D-18-0090.1.
Wadler, J. B., J. A. Zhang, R. F. Rogers, B. Jaimes, and L. K. Shay, 2021: The rapid intensification of Hurricane Michael (2018): Storm structure and the relationship to environmental and air-sea interactions. Mon. Wea. Rev., 149(1), 245−267, https://doi.org/10.1175/MWR-D-20-0145.1.
Wang, Y. Q., and J. Xu, 2010: Energy production, frictional dissipation, and maximum intensity of a numerically simulated tropical cyclone. J. Atmos. Sci., 67(1), 97−116, https://doi.org/10.1175/2009JAS3143.1.
Wang, Y. Q., and J. Y. Heng, 2016: Contribution of eye excess energy to the intensification rate of tropical cyclones: A numerical study. Journal of Advances in Modeling Earth Systems, 8(4), 1953−1968, https://doi.org/10.1002/2016MS000709.
Wentz, F. J., L. Ricciardulli, C. Gentemann, T. Meissner, K. A. Hilburn, and J. Scott, 2013: Remote sensing systems coriolis windsat daily environmental suite on 0.25 deg grid. Version 7.0.1, Wind Speed and Rain Rate. Remote Sensing Systems, Santa Rosa, CA. 2013. [Available online: www.remss.com/missions/windsat (accessed on 14 February 2021)]
Zeng, Z. H., Y. Q. Wang, Y. H. Duan, L. S. Chen, and Z. Q. Gao, 2010: On sea surface roughness parameterization and its effect on tropical cyclone structure and intensity. Adv. Atmos. Sci., 27(2), 337−355, https://doi.org/10.1007/s00376-009-8209-1.
Zhang, H., D. K. Chen, L. Zhou, X. H. Liu, T. Ding, and B. F. Zhou, 2016: Upper ocean response to typhoon Kalmaegi (2014). J. Geophys. Res., 121(8), 6520−6535, https://doi.org/10.1002/2016JC012064.
Zhang, H., and Coauthors, 2018: Net modulation of upper ocean thermal structure by Typhoon Kalmaegi (2014). J. Geophys. Res., 123(10), 7154−7171, https://doi.org/10.1029/2018JC014119.
Zhang, J. A., and R. F. Rogers, 2019: Effects of parameterized boundary layer structure on hurricane rapid intensification in shear. Mon. Wea. Rev., 147(3), 853−871, https://doi.org/10.1175/MWR-D-18-0010.1.
Zhang, J. A., P. G. Black, J. R. French, and W. M. Drennan, 2008: First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophys. Res. Lett., 35(14), L14813, https://doi.org/10.1029/2008GL034374.
Zhang, J. A., D. S. Nolan, R. F. Rogers, and V. Tallapragada, 2015: Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF. Mon. Wea. Rev., 143(8), 3136−3155, https://doi.org/10.1175/MWR-D-14-00339.1.
Zhang, J. A., J. J. Cione, E. A. Kalina, E. W. Uhlhorn, T. Hock, and J. A. Smith, 2017: Observations of infrared sea surface temperature and air-sea interaction in Hurricane Edouard (2014) using GPS dropsondes. J. Atmos. Oceanic Technol., 34(6), 1333−1349, https://doi.org/10.1175/JTECH-D-16-0211.1.
Zhang, Z., Y. Q. Wang, W. M. Zhang, and J. Xu, 2019: Coastal ocean response and its feedback to Typhoon Hato (2017) over the South China Sea: A numerical study. J. Geophys. Res., 124(24), 13 731−13 749,
Zou, Z. S., D. L. Zhao, J. W. Tian, B. Liu, and J. Huang, 2018: Drag coefficients derived from ocean current and temperature profiles at high wind speeds. Tellus A: Dynamic Meteorology and Oceanography, 70(1), 1−13, https://doi.org/10.1080/16000870.2018.1463805.