Adames, Á. F., and J. M. Wallace, 2014: Three-dimensional structure and evolution of the vertical velocity and divergence fields in the MJO. J. Atmos. Sci., 71, 4661−4681, https://doi.org/10.1175/jas-d-14-0091.1.
Adames, Á. F., and J. M. Wallace, 2015: Three-dimensional structure and evolution of the moisture field in the MJO. J. Atmos. Sci., 72, 3733−3754, https://doi.org/10.1175/jas-d-15-0003.1.
Biello, J. A., and A. J. Majda, 2005: A new multiscale model for the Madden−Julian oscillation. J. Atmos. Sci., 62, 1694−1721, https://doi.org/10.1175/jas3455.1.
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553−597, https://doi.org/10.1002/qj.828.
Fu, S. M., R. X. Liu, and J. H. Sun, 2018: On the scale interactions that dominate the maintenance of a persistent heavy rainfall event: A piecewise energy analysis. J. Atmos. Sci., 75, 907−925, https://doi.org/10.1175/JAS-D-17-0294.1.
Gottschalck, J., P. E. Roundy, C. J. Schreck III, A. Vintzileos, and C. D. Zhang, 2013: Large-scale atmospheric and oceanic conditions during the 2011-12 DYNAMO field campaign. Mon. Wea. Rev., 141, 4173−4196, https://doi.org/10.1175/MWR-D-13-00022.1.
Holopainen, E. O., 1978: A diagnostic study on the kinetic energy balance of the long-term mean flow and the associated transient fluctuation in the atmosphere. Geophysica, 15, 125−145.
Houze, R. A. Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150.
Hsu, P. C., and T. Li, 2011: Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the Western North Pacific. Part II: Apparent heat and moisture sources and eddy momentum transport. J. Climate, 24, 942−961, https://doi.org/10.1175/2010jcli3834.1.
Hsu, P.-C., and Y. Yang, 2016: Contribution of atmospheric internal processes to the interannual variability of the South Asian summer monsoon. International Journal of Climatology, 36, 2917−2930, https://doi.org/10.1002/joc.4528.
Hsu, P.-C., T. Li, and C.-H. Tsou, 2011: Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the Western North Pacific. Part I: Energetics diagnosis. J. Climate, 24, 927−941, https://doi.org/10.1175/2010jcli3833.1.
Hsu, P. C., T. H. Lee, C. H. Tsou, P. S. Chu, Y. T. Qian, and M. Y. Bi, 2017: Role of scale interactions in the abrupt change of tropical cyclone in autumn over the Western North Pacific. Climate Dyn., 49, 3175−3192, https://doi.org/10.1007/s00382-016-3504-x.
Hsu, P.-C., Z. Fu, and T. Xiao, 2018: Energetic processes regulating the strength of MJO circulation over the Maritime Continent during two types of El Niño. Atmos. Ocean. Sci. Lett., 11, 112−119, https://doi.org/10.1080/16742834.2018.1399049.
Huffman, G. J., and Coauthors, 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8, 38−55, https://doi.org/10.1175/JHM560.1.
Jiang, X. A., and Coauthors, 2020: Fifty years of research on the Madden−Julian Oscillation: Recent progress, challenges, and perspectives. J. Geophys. Res. -Atmos., e2019JD030911, https://doi.org/10.1029/2019JD030911.
Johnson, R. H., and P. E. Ciesielski, 2013: Structure and properties of Madden−Julian Oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 3157−3179, https://doi.org/10.1175/JAS-D-13-065.1.
Knutson, T. R., and K. M. Weickmann, 1987: 30−60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115, 1407−1436, https://doi.org/10.1175/1520-0493(1987)115<1407:daoclc>2.0.co;2.
Krishnamurti, T. N., R. Krishnamurti, A. Simon, A. Thomas, and V. Kumar, 2016: A Mechanism of the MJO Invoking Scale Interactions. Meteorological Monographs, 56, 5.1−5.16, https://doi.org/10.1175/amsmonographs-d-15-0009.1.
Lau, K.-H., and N.-C. Lau, 1992: The energetics and propagation dynamics of tropical summertime synoptic-scale disturbances. Mon. Wea. Rev., 120, 2523−2539, https://doi.org/10.1175/1520-0493(1992)120<2523:teapdo>2.0.co;2.
Lau, W. K. M., and D. E. Waliser, 2012: Intraseasonal Variability in the Atmosphere-Ocean Climate System. 2nd ed., Springer, 549−568, https://doi.org/10.1007/978-3-642-13914-7.
Li, C. Y., R. J. Hu, and H. Yang, 2005: Intraseasonal oscillation in the tropical Indian Ocean. Adv. Atmos. Sci., 22, 617−624, https://doi.org/10.1007/BF02918705.
Li, T., 2014: Recent advance in understanding the dynamics of the Madden−Julian oscillation. J. Meteor. Res., 28, 1−33, https://doi.org/10.1007/s13351-014-3087-6.
Li, T., and C. H. Zhou, 2009: Planetary scale selection of the Madden−Julian Oscillation. J. Atmos. Sci., 66, 2429−2443, https://doi.org/10.1175/2009jas2968.1.
Li, T., C. B. Zhao, P.-C. Hsu, and T. Nasuno, 2015: MJO initiation processes over the tropical Indian Ocean during DYNAMO/CINDY2011. J. Climate, 28, 2121−2135, https://doi.org/10.1175/JCLI-D-14-00328.1.
Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275−1277.
Liu, F., and B. Wang, 2013: Impacts of upscale heat and momentum transfer by moist Kelvin waves on the Madden−Julian oscillation: A theoretical model study. Climate Dyn., 40, 213−224, https://doi.org/10.1007/s00382-011-1281-0.
Liu, F., G. Huang, and L. C. Feng, 2012: Critical roles of convective momentum transfer in sustaining the multi-scale Madden−Julian oscillation. Theor. Appl. Climatol., 108, 471−477, https://doi.org/10.1007/s00704-011-0541-6.
Madden, R. A., and P. R. Julian, 1971: Detection of a 40−50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702−708, https://doi.org/10.1175/1520-0469(1971)028<0702:doadoi>2.0.co;2.
Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40−50 day period. J. Atmos. Sci., 29, 1109−1123, https://doi.org/10.1175/1520-0469(1972)029<1109:dogscc>2.0.co;2.
Majda, A. J., and J. A. Biello, 2004: A multiscale model for tropical intraseasonal oscillations. Proceedings of the National Academy of Sciences of the United States of America, 101, 4736−4741, https://doi.org/10.1073/pnas.0401034101.
Majda, A. J., and S. N. Stechmann, 2009: The skeleton of tropical intraseasonal oscillations. Proceedings of the National Academy of Sciences of the United States of America, 106, 8417−8422, https://doi.org/10.1073/pnas.0903367106.
Maloney, E. D., and M. J. Dickinson, 2003: The intraseasonal oscillation and the energetics of summertime tropical Western North Pacific synoptic-scale disturbances. J. Atmos. Sci., 60, 2153−2168, https://doi.org/10.1175/1520-0469(2003)060<2153:tioate>2.0.co;2.
Maloney, E. D., and A. H. Sobel, 2004: Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J. Climate, 17, 4368−4386, https://doi.org/10.1175/jcli-3212.1.
Mapes, B., S. Tulich, J. L. Lin, and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42, 3−29, https://doi.org/10.1016/j.dynatmoce.2006.03.003.
Mei, S. L., T. Li, and W. Chen, 2015: Three-type MJO Initiation processes over the Western Equatorial Indian Ocean. Adv. Atmos. Sci., 32, 1208−1216, https://doi.org/10.1007/s00376-015-4201-0.
Moncrieff, M. W., D. E. Waliser, M. J. Miller, M. A. Shapiro, G. R. Asrar, and J. Caughey, 2012: Multiscale convective organization and the YOTC virtual global field campaign. Bull. Amer. Meteor. Soc., 93, 1171−1187, https://doi.org/10.1175/bams-d-11-00233.1.
Moum, J. N., and Coauthors, 2014: Air−sea interactions from westerly wind bursts during the November 2011 MJO in the Indian Ocean. Bull. Amer. Meteor. Soc., 95, 1185−1199, https://doi.org/10.1175/BAMS-D-12-00225.1.
Murakami, S., 2011: Atmospheric local energetics and energy interactions between mean and eddy fields. Part I: Theory. J. Atmos. Sci., 68, 760−768, https://doi.org/10.1175/2010jas3664.1.
Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66, 823−839, https://doi.org/10.2151/jmsj1965.66.6_823.
Oh, J.-H., X. A. Jiang, D. E. Waliser, M. W. Moncrieff, R. H. Johnson, and P. Ciesielski, 2015: A momentum budget analysis of westerly wind events associated with the Madden−Julian oscillation during DYNAMO. J. Atmos. Sci., 72, 3780−3799, https://doi.org/10.1175/JAS-D-15-0044.1.
Seiki, A., and Y. N. Takayabu, 2007: Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part I: Statistics. Mon. Wea. Rev., 135, 3325−3345, https://doi.org/10.1175/mwr3477.1.
Sobel, A., and E. Maloney, 2012: An idealized semi-empirical framework for modeling the Madden−Julian oscillation. J. Atmos. Sci., 69, 1691−1705, https://doi.org/10.1175/jas-d-11-0118.1.
Sobel, A. H., E. D. Maloney, G. Bellon, and D. M. Frierson, 2008: The role of surface heat fluxes in tropical intraseasonal oscillations. Nature Geoscience, 1, 653−657, https://doi.org/10.1038/ngeo312.
Sobel, A. H., E. D. Maloney, G. Bellon, and D. M. Frierson, 2010: Surface fluxes and tropical intraseasonal variability: A reassessment. Journal of Advances in Modeling Earth Systems, 2, 2, https://doi.org/10.3894/james.2010.2.2.
Sobel, A. H., S. G. Wang, and D. Kim, 2014: Moist static energy budget of the MJO during DYNAMO. J. Atmos. Sci., 71, 4276−4291, https://doi.org/10.1175/JAS-D-14-0052.1.
Waliser, D. E., and Coauthors, 2012: The “Year” of tropical convection (May 2008−April 2010): Climate variability and weather highlights. Bull. Amer. Meteor. Soc., 93, 1189−1218, https://doi.org/10.1175/2011bams3095.1.
Wang, B., and F. Liu, 2011: A Model for Scale Interaction in the Madden−Julian Oscillation. J. Atmos. Sci., 68, 2524−2536, https://doi.org/10.1175/2011JAS3660.1.
Wang, B., F. Liu, and G. S. Chen, 2016: A trio-interaction theory for Madden−Julian oscillation. Geoscience Letters, 3, 34, https://doi.org/10.1186/s40562-016-0066-z.
Yoneyama, K., C. D. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden−Julian oscillation. Bull. Amer. Meteor. Soc., 94, 1871−1891, https://doi.org/10.1175/BAMS-D-12-00157.1.
Zhang, C. D., 2005: Madden-Julian oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.
Zhang, C. D., 2013: Madden-Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 1849−1870, https://doi.org/10.1175/BAMS-D-12-00026.1.
Zhang, C., Á. F. Adames, B. Khouider, B. Wang, and D. Yang, 2020: Four theories of the Madden−Julian oscillation. Rev. Geophys., 58, e2019RG000685, https://doi.org/10.1029/2019RG000685.
Zhang, C. D., and J. Ling, 2012: Potential vorticity of the Madden−Julian oscillation. J. Atmos. Sci., 69, 65−78, https://doi.org/10.1175/jas-d-11-081.1.
Zhao, C. B., T. Li, and T. J. Zhou, 2013: Precursor signals and processes associated with MJO initiation over the Tropical Indian Ocean. J. Climate, 26, 291−307, https://doi.org/10.1175/jcli-d-12-00113.1.
Zhou, L., A. H. Sobel, and R. Murtugudde, 2012: Kinetic energy budget for the Madden-Julian oscillation in a multiscale framework. J. Climate, 25, 5386−5403, https://doi.org/10.1175/JCLI-D-11-00339.1.