Alzubaidi, L., and Coauthors, 2021: Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8, 53, https://doi.org/10.1186/s40537-021-00444-8.
Asfaw, T. G., and J. J. Luo, 2022: Seasonal prediction of summer precipitation over East Africa using NUIST-CFS1.0. Adv. Atmos. Sci., 39, 355−372, https://doi.org/10.1007/s00376-021-1180-1.
Baño-Medina, J., R. Manzanas, and J. M. Gutiérrez, 2020: Configuration and intercomparison of deep learning neural models for statistical downscaling. Geoscientific Model Development, 13, 2109−2124, https://doi.org/10.5194/gmd-13-2109-2020.
Baño-Medina, J., R. Manzanas, and J. M. Gutiérrez, 2021: On the suitability of deep convolutional neural networks for continental-wide downscaling of climate change projections. Climate Dyn., 57, 2941−2951, https://doi.org/10.1007/s00382-021-05847-0.
Baño-Medina, J., R. Manzanas, E. Cimadevilla, J. Fernández, J. González-Abad, A. S. Cofiño, and J. M. Gutiérrez, 2022: Downscaling multi-model climate projection ensembles with deep learning (DeepESD): Contribution to CORDEX EUR-44. Geoscientific Model Development, 15, 6747−6758, https://doi.org/10.5194/gmd-15-6747-2022.
Bedia, J., and Coauthors, 2020: Statistical downscaling with the downscaleR package (v3.1.0): Contribution to the VALUE intercomparison experiment. Geoscientific Model Development, 13, 1711−1735, https://doi.org/10.5194/gmd-13-1711-2020.
Bergstra, J., and Y. Bengio, 2012: Random search for hyper-parameter optimization. The Journal of Machine Learning Research, 13, 281−305.
Bhend, J., I. Mahlstein, and M. A. Liniger, 2017: Predictive skill of climate indices compared to mean quantities in seasonal forecasts. Quart. J. Roy. Meteor. Soc., 143, 184−194, https://doi.org/10.1002/qj.2908.
Brands, S., J. M. Gutiérrez, S. Herrera, and A. S. Cofiño, 2012: On the use of reanalysis data for downscaling. J. Climate, 25, 2517−2526, https://doi.org/10.1175/JCLI-D-11-00251.1.
Bruyère, C. L., J. M. Done, G. J. Holland, and S. Fredrick, 2014: Bias corrections of global models for regional climate simulations of high-impact weather. Climate Dyn., 43, 1847−1856, https://doi.org/10.1007/s00382-013-2011-6.
Buontempo, C., and C. Hewitt, 2018: EUPORIAS and the development of climate services. Climate Services, 9, 1−4, https://doi.org/10.1016/j.cliser.2017.06.011.
Bürger, G., T. Q. Murdock, A. T. Werner, S. R. Sobie, and A. J. Cannon, 2012: Downscaling extremes-an intercomparison of multiple statistical methods for present climate. J. Climate, 25, 4366−4388, https://doi.org/10.1175/JCLI-D-11-00408.1.
Camberlin, P., 1997: Rainfall anomalies in the source region of the Nile and their connection with the Indian Summer Monsoon. J. Climate, 10, 1380−1392, https://doi.org/10.1175/1520-0442(1997)010<1380:RAITSR>2.0.CO;2.
Cannon, A. J., 2008: Probabilistic multisite precipitation downscaling by an expanded Bernoulli-gamma density network. Journal of Hydrometeorology, 9, 1284−1300, https://doi.org/10.1175/2008JHM960.1.
Chen, D., and A. G. Dai, 2019: Precipitation characteristics in the community atmosphere model and their dependence on model physics and resolution. Journal of Advances in Modeling Earth Systems, 11, 2352−2374, https://doi.org/10.1029/2018MS001536.
Chen, J., X. J. Zhang, and F. P. Brissette, 2014: Assessing scale effects for statistically downscaling precipitation with GPCC model. International Journal of Climatology, 34, 708−727, https://doi.org/10.1002/joc.3717.
Cofiño, A. S., and Coauthors, 2018: The ECOMS user data gateway: Towards seasonal forecast data provision and research reproducibility in the era of Climate Services. Climate Services, 9, 33−43, https://doi.org/10.1016/j.cliser.2017.07.001.
Cong, S., and Y. Zhou, 2023: A review of convolutional neural network architectures and their optimizations. Artificial Intelligence Review, 56, 1905−1969, https://doi.org/10.1007/s10462-022-10213-5.
Dai, A. G., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 4605−4630, https://doi.org/10.1175/JCLI3884.1.
Díez, E., C. Primo, J. A. García-Moya, J. M. Gutiérrez, and B. Orfila, 2005: Statistical and dynamical downscaling of precipitation over Spain from DEMETER seasonal forecasts. Tellus A, 57, 409−423, https://doi.org/10.1111/j.1600-0870.2005.00130.x.
Díez, E., B. Orfila, M. D. Frías, J. Fernández, A. S. Cofiño, and J. M. Gutiérrez, 2011: Downscaling ECMWF seasonal precipitation forecasts in Europe using the RCA model. Tellus A, 63, 757−762, https://doi.org/10.1111/j.1600-0870.2011.00523.x.
Di Luca, A., R. de Elía, and R. Laprise, 2015: Challenges in the quest for added value of regional climate dynamical downscaling. Current Climate Change Reports, 1, 10−21, https://doi.org/10.1007/s40641-015-0003-9.
Diro, G. T., A. M. Tompkins, and X. Bi, 2012: Dynamical downscaling of ECMWF Ensemble seasonal forecasts over East Africa with RegCM3. J. Geophys. Res.: Atmos., 117, D16103, https://doi.org/10.1029/2011JD016997.
Doblas-Reyes, F. J., and C. M. Goodess, 2005: Working paper on the need for downscaling of seasonal-to-decadal integrations within the EU-funded ENSEMBLES project. ENSEMBLES Technical Report No. 2, 1−10.
Dumoulin, V., and F. Visin, 2018: A guide to convolution arithmetic for deep learning. https://doi.org/10.48550/ARXIV.1603.07285.
Funk, C., and Coauthors, 2015: The climate hazards infrared precipitation with stations--A new environmental record for monitoring extremes. Scientific Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66.
Giorgi, F., and W. J. Gutowski, 2015: Regional dynamical downscaling and the CORDEX initiative. Annual Review of Environment and Resources, 40, 467−490, https://doi.org/10.1146/annurev-environ-102014-021217.
Gutiérrez, J. M., D. San-Martín, S. Brands, R. Manzanas, and S. Herrera, 2013: Reassessing statistical downscaling techniques for their robust application under climate change conditions. J. Climate, 26, 171−188, https://doi.org/10.1175/JCLI-D-11-00687.1.
Gutiérrez, J. M., and Coauthors, 2019: An intercomparison of a large ensemble of statistical downscaling methods over Europe: Results from the VALUE perfect predictor cross-validation experiment. International Journal of Climatology, 39, 3750−3785, https://doi.org/10.1002/joc.5462.
Gutmann, E. D., R. M. Rasmussen, C. H. Liu, K. Ikeda, D. J. Gochis, M. P. Clark, J. Dudhia, and G. Thompson, 2012: A comparison of statistical and dynamical downscaling of winter precipitation over complex terrain. J. Climate, 25, 262−281, https://doi.org/10.1175/2011JCLI4109.1.
Gutowski, W. J., and Coauthors, 2020: The ongoing need for high-resolution regional climate models: Process understanding and stakeholder information. Bull. Amer. Meteor. Soc., 101, E664−E683, https://doi.org/10.1175/BAMS-D-19-0113.1.
Hansen, J. W., S. J. Mason, L. Q. Sun, and A. Tall, 2011: Review of seasonal climate forecasting for agriculture in sub-Saharan Africa. Experimental Agriculture, 47, 205−240, https://doi.org/10.1017/S0014479710000876.
Harrison, M., A. Kanga, G. O. Magrin, G. Hugo, I. Tarakidzwa, C. Mullen, and H. Meinke, 2007: Use of seasonal forecasts and climate prediction in operational agriculture. World Meteorological Organization Commission for Agricultural Meteorology, CAgM Rep. No. 102, 87 pp.
He, X. G., N. W. Chaney, M. Schleiss, and J. Sheffield, 2016: Spatial downscaling of precipitation using adaptable random forests. Water Resour. Res., 52, 8217−8237, https://doi.org/10.1002/2016WR019034.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049, https://doi.org/10.1002/qj.3803.
Hess, P., and N. Boers, 2022: Deep learning for improving numerical weather prediction of heavy rainfall. Journal of Advances in Modeling Earth Systems, 14, e2021MS002765, https://doi.org/10.1029/2021MS002765.
Hewitson, B. C., and R. G. Crane, 1996: Climate downscaling: Techniques and application. Climate Research, 7, 85−95, https://doi.org/10.3354/cr007085.
Katz, R. W., and B. G. Brown, 1992: Extreme events in a changing climate: Variability is more important than averages. Climate Change, 21, 289−302, https://doi.org/10.1007/BF00139728.
Kipkogei, O., A. M. Mwanthi, J. B. Mwesigwa, Z. K. K. Atheru, M. A. Wanzala, and G. Artan, 2017: Improved seasonal prediction of rainfall over East Africa for application in agriculture: Statistical downscaling of CFSv2 and GFDL-FLOR. J. Appl. Meteorol. Climatol., 56, 3229−3243, https://doi.org/10.1175/JAMC-D-16-0365.1.
Korecha, D., and A. G. Barnston, 2007: Predictability of June–September rainfall in Ethiopia. Mon. Wea. Rev., 135, 628−650, https://doi.org/10.1175/MWR3304.1.
Lecun, Y., Y. Bengio, and G. Hinton, 2015: Deep learning. Nature, 521, 436−444, https://doi.org/10.1038/nature14539.
Legasa, M. N., S. Thao, M. Vrac, and R. Manzanas, 2023: Assessing three perfect prognosis methods for statistical downscaling of climate change precipitation scenarios. Geophys. Res. Lett., 50, e2022GL102525, https://doi.org/10.1029/2022GL102525.
Lorenz, E. N., 1969: Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci., 26, 636−646, https://doi.org/10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2.
Manzanas, R., M. D. Frías, A. S. Cofiño, and J. M. Gutiérrez, 2014: Validation of 40 year multimodel seasonal precipitation forecasts: The role of enso on the global skill. J. Geophys. Res.: Atmos., 119, 1708−1719, https://doi.org/10.1002/2013JD020680.
Manzanas, R., A. Lucero, A. Weisheimer, and J. M. Gutiérrez, 2018b: Can bias correction and statistical downscaling methods improve the skill of seasonal precipitation forecasts. Climate Dyn., 50, 1161−1176, https://doi.org/10.1007/s00382-017-3668-z.
Manzanas, R., S. Brands, D. San-Martín, A. Lucero, C. Limbo, and J. M. Gutiérrez, 2015: Statistical downscaling in the tropics can be sensitive to reanalysis choice: A case study for precipitation in the Philippines. J. Climate, 28, 4171−4184, https://doi.org/10.1175/JCLI-D-14-00331.1.
Manzanas, R., J. M. Gutiérrez, J. Fernández, E. van Meijgaard, S. Calmanti, M. E. Magariño, A. S. Cofiño, and S. Herrera, 2018a: Dynamical and statistical downscaling of seasonal temperature forecasts in Europe: Added value for user applications. Climate Services, 9, 44−56, https://doi.org/10.1016/j.cliser.2017.06.004.
Manzanas, R., J. M. Gutiérrez, J. Bhend, S. Hemri, F. J. Doblas-Reyes, V. Torralba, E. Penabad, and A. Brookshaw, 2019: Bias adjustment and ensemble recalibration methods for seasonal forecasting: A comprehensive intercomparison using the C3S dataset. Climate Dyn., 53, 1287−1305, https://doi.org/10.1007/s00382-019-04640-4.
Maraun, D., 2012: Nonstationarities of regional climate model biases in European seasonal mean temperature and precipitation sums. Geophys. Res. Lett., 39, L06706, https://doi.org/10.1029/2012GL051210.
Maraun, D., and M. Widmann, 2018: Statistical Downscaling and Bias Correction for Climate Research. Cambridge University Press, 347 pp.
Maraun, D., M. Widmann, and J. M. Gutiérrez, 2019: Statistical downscaling skill under present climate conditions: A synthesis of the VALUE perfect predictor experiment. International Journal of Climatology, 39, 3692−3703, https://doi.org/10.1002/joc.5877.
Maraun, D., and Coauthors, 2010: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, https://doi.org/10.1029/2009RG000314.
Maraun, D., and Coauthors, 2015: VALUE: A framework to validate downscaling approaches for climate change studies. Earth’s Future, 3, 1−14, https://doi.org/10.1002/2014EF000259.
Meza, F. J., J. W. Hansen, and D. Osgood, 2008: Economic value of seasonal climate forecasts for agriculture: Review of ex-ante assessments and recommendations for future research. J. Appl. Meteorol. Climatol., 47, 1269−1286, https://doi.org/10.1175/2007JAMC1540.1.
Mori, P., T. Schwitalla, M. B. Ware, K. Warrach-Sagi, and V. Wulfmeyer, 2021: Downscaling of seasonal ensemble forecasts to the convection-permitting scale over the Horn of Africa using the WRF model. International Journal of Climatology, 41, E1791−E1811, https://doi.org/10.1002/joc.6809.
Nelder, J. A., and R. W. M. Wedderburn, 1972: Generalized linear models. Journal of the Royal Statistical Society: Series A (General), 135, 370−384, https://doi.org/10.2307/2344614.
Nicholson, S. E., 2017: Climate and climatic variability of rainfall over eastern Africa. Rev. Geophys., 55, 590−635, https://doi.org/10.1002/2016RG000544.
Nikulin, G., and Coauthors, 2018: Dynamical and statistical downscaling of a global seasonal hindcast in eastern Africa. Climate Services, 9, 72−85, https://doi.org/10.1016/j.cliser.2017.11.003.
Ordoñez, L., and Coauthors, 2022: Applying agroclimatic seasonal forecasts to improve rainfed maize agronomic management in Colombia. Climate Services, 28, 100333, https://doi.org/10.1016/j.cliser.2022.100333.
Pan, B. X., K. Hsu, A. AghaKouchak, and S. Sorooshian, 2019: Improving precipitation estimation using convolutional neural network. Water Resour. Res., 55, 2301−2321, https://doi.org/10.1029/2018WR024090.
Pour, S. H., S. Shahid, and E. S. Chung, 2016: A hybrid model for statistical downscaling of daily rainfall. Procedia Engineering, 154, 1424−1430, https://doi.org/10.1016/j.proeng.2016.07.514.
Riddle, E. E., and K. H. Cook, 2008: Abrupt rainfall transitions over the Greater Horn of Africa: Observations and regional model simulations. J. Geophys. Res.: Atmos., 113, D15109, https://doi.org/10.1029/2007JD009202.
Riesenhuber, M., and T. Poggio, 1999: Hierarchical models of object recognition in cortex. Nature Neuroscience, 2, 1019−1025, https://doi.org/10.1038/14819.
Robertson, A. W., J. H. Qian, M. K. Tippett, V. Moron, and A. Lucero, 2012: Downscaling of seasonal rainfall over the Philippines: Dynamical versus statistical approaches. Mon. Wea. Rev., 140, 1204−1218, https://doi.org/10.1175/MWR-D-11-00177.1.
Rockel, B., 2015: The regional downscaling approach: A brief history and recent advances. Current Climate Change Reports, 1, 22−29, https://doi.org/10.1007/s40641-014-0001-3.
Ronneberger, O., P. Fischer, and T. Brox, 2015: U-net: Convolutional networks for biomedical image segmentation. Preprints, 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, Springer, 234−241, https://doi.org/10.1007/978-3-319-24574-4_28.
San-Martín, D., R. Manzanas, S. Brands, S. Herrera, and J. M. Gutiérrez, 2017: Reassessing model uncertainty for regional projections of precipitation with an ensemble of statistical downscaling methods. J. Climate, 30, 203−223, https://doi.org/10.1175/JCLI-D-16-0366.1.
Sariturk, B., D. Z. Seker, O. Ozturk, and B. Bayram, 2022: Performance evaluation of shallow and deep CNN architectures on building segmentation from high-resolution images. Earth Science Informatics, 15, 1801−1823, https://doi.org/10.1007/s12145-022-00840-5.
Seregina, L. S., A. H. Fink, R. van der Linden, N. A. Elagib, and J. G. Pinto, 2019: A new and flexible rainy season definition: Validation for the Greater Horn of Africa and application to rainfall trends. International Journal of Climatology, 39, 989−1012, https://doi.org/10.1002/joc.5856.
Seregina, L. S., A. H. Fink, R. van der Linden, C. Funk, and J. G. Pinto, 2021: Using seasonal rainfall clusters to explain the interannual variability of the rain belt over the Greater Horn of Africa. International Journal of Climatology, 41, E1717−E1737, https://doi.org/10.1002/joc.6802.
Sha, Y. K., D. J. Gagne II, G. West, and R. Stull, 2020: Deep-learning-based gridded downscaling of surface meteorological variables in complex terrain. Part II: Daily precipitation. J. Appl. Meteorol. Climatol., 59, 2075−2092, https://doi.org/10.1175/JAMC-D-20-0058.1.
Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, 2014: Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15, 1929−1958.
Sun, L., and Y. F. Lan, 2021: Statistical downscaling of daily temperature and precipitation over China using deep learning neural models: Localization and comparison with other methods. International Journal of Climatology, 41, 1128−1147, https://doi.org/10.1002/joc.6769.
Sun, Y., S. Solomon, A. G. Dai, and R. W. Portmann, 2006: How often does it rain. J. Climate, 19, 916−934, https://doi.org/10.1175/JCLI3672.1.
Tang, J. P., X. R. Niu, S. Y. Wang, H. X. Gao, X. Y. Wang, and J. Wu, 2016: Statistical downscaling and dynamical downscaling of regional climate in China: Present climate evaluations and future climate projections. J. Geophys. Res.: Atmos., 121, 2110−2129, https://doi.org/10.1002/2015JD023977.
Tian, D., C. J. Martinez, W. D. Graham, and S. Hwang, 2014: Statistical downscaling multimodel forecasts for seasonal precipitation and surface temperature over the Southeastern United States. J. Climate, 27, 8384−8411, https://doi.org/10.1175/JCLI-D-13-00481.1.
Tripathi, S., V. V. Srinivas, and R. S. Nanjundiah, 2006: Downscaling of precipitation for climate change scenarios: A support vector machine approach. J. Hydrol., 330, 621−640, https://doi.org/10.1016/j.jhydrol.2006.04.030.
Tucker, S., R. G. Jones, E. Buonomo, L. Burgin, and F. Gallo, 2018: Dynamical downscaling of GloSea5 over Ethiopia. Climate Services, 9, 57−71, https://doi.org/10.1016/j.cliser.2018.02.001.
Vaittinada Ayar, P., M. Vrac, S. Bastin, J. Carreau, M. Déqué, and C. Gallardo, 2016: Intercomparison of statistical and dynamical downscaling models under the EURO- and MED-CORDEX initiative framework: Present climate evaluations. Climate Dyn., 46, 1301−1329, https://doi.org/10.1007/s00382-015-2647-5.
Vandal, T., E. Kodra, and A. R. Ganguly, 2019: Intercomparison of machine learning methods for statistical downscaling: The case of daily and extreme precipitation. Theor. Appl. Climatol., 137, 557−570, https://doi.org/10.1007/s00704-018-2613-3.
Vaughan, A., W. Tebbutt, J. S. Hosking, and R. E. Turner, 2022: Convolutional conditional neural processes for local climate downscaling. Geoscientific Model Development, 15, 251−268, https://doi.org/10.5194/gmd-15-251-2022.
Viste, E., and A. Sorteberg, 2013a: Moisture transport into the Ethiopian highlands. International Journal of Climatology, 33, 249−263, https://doi.org/10.1002/joc.3409.
Viste, E., and A. Sorteberg, 2013b: The effect of moisture transport variability on Ethiopian summer precipitation. International Journal of Climatology, 33, 3106−3123, https://doi.org/10.1002/joc.3566.
Wang, F., D. Tian, L. Lowe, L. Kalin, and J. Lehrter, 2021: Deep learning for daily precipitation and temperature downscaling. Water Resour. Res., 57, e2020WR029308, https://doi.org/10.1029/2020wr029308.
Weyn, J. A., D. R. Durran, and R. Caruana, 2020: Improving data-driven global weather prediction using deep convolutional neural networks on a cubed sphere. Journal of Advances in Modeling Earth Systems, 12, e2020MS002109, https://doi.org/10.1029/2020MS002109.
Wilby, R. L., S. P. Charles, E. Zorita, B. Timbal, P. Whetton, and L. O. Mearns, 2004: Guidelines for use of climate scenarios developed from statistical downscaling methods. Analysis, 27, 1−27.
Wilby, R. L., T. M. L. Wigley, D. Conway, P. D. Jones, B. C. Hewitson, J. Main, and D. S. Wilks, 1998: Statistical downscaling of general circulation model output: A comparison of methods. Water Resour. Res., 34, 2995−3008, https://doi.org/10.1029/98WR02577.
Yoon, J. H., L. Ruby Leung, and J. Correia, 2012: Comparison of dynamically and statistically downscaled seasonal climate forecasts for the cold season over the United States. J. Geophys. Res.: Atmos., 117, D21109, https://doi.org/10.1029/2012JD017650.
Zeiler, M. D., D. Krishnan, G. W. Taylor, and R. Fergus, 2010: Deconvolutional networks. Preprints, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, IEEE, 2528−2535, https://doi.org/10.1109/CVPR.2010.5539957.
Zhang, W. M., M. Brandt, X. Y. Tong, Q. J. Tian, and R. Fensholt, 2018: Impacts of the seasonal distribution of rainfall on vegetation productivity across the Sahel. Biogeosciences, 15, 319−330, https://doi.org/10.5194/bg-15-319-2018.