Alizadeh, O., and Z. H. Lin, 2021: Rapid Arctic warming and its link to the waviness and strength of the westerly jet stream over West Asia. Global and Planetary Change, 199, 103447, https://doi.org/10.1016/j.gloplacha.2021.103447.
Blackport, R., and J. A. Screen, 2020: Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves. Science Advances, 6, eaay2880, https://doi.org/10.1126/sciadv.aay2880.
Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541−560, https://doi.org/10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.
Budikova, D., T. W. Ford, and T. J. Ballinger, 2019: United States heat wave frequency and Arctic Ocean marginal sea ice variability. J. Geophys. Res.: Atmos., 124, 6247−6264, https://doi.org/10.1029/2018JD029365.
Chen, X. D., and D. H. Luo, 2021: Impact of Greenland blocking on midlatitude extreme cold weather: Modulation of Arctic sea ice in western Greenland. Science China Earth Sciences, 64, 1065−1079, https://doi.org/10.1007/s11430-020-9782-2.
Cohen, J., and Coauthors, 2018: Arctic change and possible influence on mid-latitude climate and weather: A US CLIVAR white paper. US CLIVAR Rep. 2018-1, 41 pp, https://doi.org/10.5065/D6TH8KGW.
Cohen, J., and Coauthors, 2020: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nature Climate Change, 10, 20−29, https://doi.org/10.1038/s41558-019-0662-y.
Coumou, D., G. Di Capua, S. Vavrus, L. Wang, and S. Wang, 2018: The influence of Arctic amplification on mid-latitude summer circulation. Nature Communications, 9, 2959, https://doi.org/10.1038/s41467-018-05256-8.
Deng, K. Q., X. W. Jiang, C. D. Hu, and D. L. Chen, 2020: More frequent summer heat waves in southwestern China linked to the recent declining of Arctic sea ice. Environmental Research Letters, 15, 074011, https://doi.org/10.1088/1748-9326/ab8335.
Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteorol., 18, 1016−1022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.
Francis, J. A., and S. J. Vavrus, 2015: Evidence for a wavier jet stream in response to rapid Arctic warming. Environmental Research Letters, 10, 014005, https://doi.org/10.1088/1748-9326/10/1/014005.
Germe, A., M.-N. Houssais, C. Herbaut, and C. Cassou, 2011: Greenland Sea sea ice variability over 1979−2007 and its link to the surface atmosphere. J. Geophys. Res.: Oceans, 116, C10034, https://doi.org/10.1029/2011JC006960.
Gu, S., Y. Zhang, Q. G. Wu, and X.-Q. Yang, 2018: The linkage between Arctic sea ice and midlatitude weather: In the perspective of energy. J. Geophys. Res.: Atmos., 123, 11 536−11 550, https://doi.org/10.1029/2018JD028743.
Guo, D., Y. Q. Gao, I. Bethke, D. Y. Gong, O. M. Johannessen, and H. J. Wang, 2014: Mechanism on how the spring Arctic sea ice impacts the East Asian summer monsoon. Theor. Appl. Climatol., 115, 107−119, https://doi.org/10.1007/s00704-013-0872-6.
He, S. P., Y. Q. Gao, T. Furevik, H. J. Wang, and F. Li, 2018: Teleconnection between sea ice in the Barents Sea in June and the Silk Road, Pacific–Japan and East Asian rainfall patterns in August. Adv. Atmos. Sci., 35, 52−64, https://doi.org/10.1007/s00376-017-7029-y.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049, https://doi.org/10.1002/qj.3803.
Horton, R. M., J. S. Mankin, C. Lesk, E. Coffel, and C. Raymond, 2016: A review of recent advances in research on extreme heat events. Current Climate Change Reports, 2, 242−259, https://doi.org/10.1007/s40641-016-0042-x.
Iwasaka, N., and J. M. Wallace, 1995: Large scale air sea interaction in the northern hemisphere from a view point of variations of surface heat flux by SVD analysis. J. Meteor. Soc. Japan, 73, 781−794, https://doi.org/10.2151/jmsj1965.73.4_781.
Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437−471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
Karl, T. R., R. W. Knight, and N. Plummer, 1995: Trends in high-frequency climate variability in the twentieth century. Nature, 377, 217−220, https://doi.org/10.1038/377217a0.
Kotz, M., L. Wenz, A. Stechemesser, M. Kalkuhl, and A. Levermann, 2021: Day-to-day temperature variability reduces economic growth. Nature Climate Change, 11, 319−325, https://doi.org/10.1038/s41558-020-00985-5.
Lee, S. H., J. C. Furtado, and A. J. Charlton-Perez, 2019: Wintertime North American weather regimes and the Arctic stratospheric polar vortex. Geophys. Res. Lett., 46, 14 892−14 900, https://doi.org/10.1029/2019GL085592.
Lewis, S. C., and A. D. King, 2017: Evolution of mean, variance and extremes in 21st century temperatures. Weather and Climate Extremes, 15, 1−10, https://doi.org/10.1016/j.wace.2016.11.002.
Li, X. X., Z. W. Wu, and Y. J. Li, 2019: A link of China warming hiatus with the winter sea ice loss in Barents-Kara Seas. Climate Dyn., 53, 2625−2642, https://doi.org/10.1007/s00382-019-04645-z.
Liu, J. P., J. A. Curry, H. J. Wang, M. R. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proceedings of the National Academy of Sciences of the United States of America, 109, 4074−4079, https://doi.org/10.1073/pnas.1114910109.
Liu, Y., and Coauthors, 2020: Role of autumn Arctic Sea ice in the subsequent summer precipitation variability over East Asia. International Journal of Climatology, 40, 706−722, https://doi.org/10.1002/joc.6232.
Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157−167, https://doi.org/10.1111/j.2153-3490.1955.tb01148.x.
Luo, D. H., X. D. Chen, A. G. Dai, and I. Simmonds, 2018: Changes in atmospheric blocking circulations linked with winter Arctic warming: A new perspective. J. Climate, 31, 7661−7678, https://doi.org/10.1175/JCLI-D-18-0040.1.
Luo, D. H., X. D. Chen, J. Overland, I. Simmonds, Y. T. Wu, and P. F. Zhang, 2019: Weakened potential vorticity barrier linked to recent winter Arctic sea ice loss and midlatitude cold extremes. J. Climate, 32, 4235−4261, https://doi.org/10.1175/JCLI-D-18-0449.1.
Murakami, M., 1983: Analysis of the deep convective activity over the western Pacific and southeast Asia. Part Ⅰ: Diurnal variation. J. Meteor. Soc. Japan, 61, 60−76, https://doi.org/10.2151/jmsj1965.61.1_60.
Overland, J. E., and Coauthors, 2016: Nonlinear response of mid-latitude weather to the changing Arctic. Nature Climate Change, 6, 992−999, https://doi.org/10.1038/nclimate3121.
Overland, J. E., and Coauthors, 2021: How do intermittency and simultaneous processes obfuscate the Arctic influence on midlatitude winter extreme weather events? Environmental Research Letters, 16, 043002, https://doi.org/10.1088/1748-9326/abdb5d.
Pfleiderer, P., C. F. Schleussner, K. Kornhuber, and D. Coumou, 2019: Summer weather becomes more persistent in a 2°C world. Nature Climate Change, 9, 666−671, https://doi.org/10.1038/s41558-019-0555-0.
Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 1334−1337, https://doi.org/10.1038/nature09051.
Serreze, M. C., and J. A. Francis, 2006: The Arctic amplification debate. Climatic Change, 76, 241−264, https://doi.org/10.1007/s10584-005-9017-y.
Serreze, M. C., J. Stroeve, A. P. Barrett, and L. N. Boisvert, 2016: Summer atmospheric circulation anomalies over the Arctic Ocean and their influences on September sea ice extent: A cautionary tale. J. Geophys. Res.: Atmos., 121, 11 463−11 485, https://doi.org/10.1002/2016JD025161.
Strong, C., 2012: Atmospheric influence on Arctic marginal ice zone position and width in the Atlantic sector, February–April 1979−2010. Climate Dyn., 39, 3091−3102, https://doi.org/10.1007/s00382-012-1356-6.
Sun, L. T., J. Perlwitz, and M. Hoerling, 2016: What caused the recent "Warm Arctic, Cold Continents" trend pattern in winter temperatures? Geophys. Res. Lett., 43, 5345−5352, https://doi.org/10.1002/2016GL069024.
Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608−627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.
Tang, Q. H., X. J. Zhang, and J. A. Francis, 2014: Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere. Nature Climate Change, 4, 45−50, https://doi.org/10.1038/nclimate2065.
Tian, Y. R., Y. Q. Gao, and D. Guo, 2021: The relationship between melt season sea ice over the Bering Sea and summer precipitation over mid-latitude East Asia. Adv. Atmos. Sci., 38, 918−930, https://doi.org/10.1007/s00376-021-0348-z.
Titchner, H. A., and N. A. Rayner, 2014: The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations. J. Geophys. Res.: Atmos., 119, 2864−2889, https://doi.org/10.1002/2013JD020316.
Vihma, T., 2014: Effects of Arctic sea ice decline on weather and climate: A review. Surveys in Geophysics, 35, 1175−1214, https://doi.org/10.1007/s10712-014-9284-0.
Wang, X. J., Y. H. Liu, J. R. Key, and R. Dworak, 2022: A new perspective on four decades of changes in Arctic Sea Ice from satellite observations. Remote Sensing, 14, 1846, https://doi.org/10.3390/rs14081846.
Wu, B. Y., and J. A. Francis, 2019: Summer Arctic cold anomaly dynamically linked to East Asian heat waves. J. Climate, 32, 1137−1150, https://doi.org/10.1175/JCLI-D-18-0370.1.
Wu, B. Y., and Z. K. Li, 2022: Possible impacts of anomalous Arctic sea ice melting on summer atmosphere. International Journal of Climatology, 42, 1818−1827, https://doi.org/10.1002/joc.7337.
Wu, B. Y., R. H. Zhang, R. D'Arrigo, and J. Z. Su, 2013: On the relationship between winter sea ice and summer atmospheric circulation over Eurasia. J. Climate, 26, 5523−5536, https://doi.org/10.1175/JCLI-D-12-00524.1.
Xie, Y. K., G. X. Wu, Y. M. Liu, and J. P. Huang, 2020: Eurasian cooling linked with Arctic warming: Insights from PV dynamics. J. Climate, 33, 2627−2644, https://doi.org/10.1175/JCLI-D-19-0073.1.
Xu, M., W. S. Tian, J. K. Zhang, J. A. Screen, J. L. Huang, K. Qie, and T. Wang, 2021: Distinct tropospheric and stratospheric mechanisms linking historical Barents-Kara sea-ice loss and late winter eurasian temperature variability. Geophys. Res. Lett., 48, e2021GL095262, https://doi.org/10.1029/2021GL095262.
Xu, X. P., S. P. He, Y. Q. Gao, T. Furevik, H. J. Wang, F. Li, and F. Ogawa, 2019: Strengthened linkage between midlatitudes and Arctic in boreal winter. Climate Dyn., 53, 3971−3983, https://doi.org/10.1007/s00382-019-04764-7.
Xu, Z. F., F. Huang, Q. Liu, and C. B. Fu, 2020: Global pattern of historical and future changes in rapid temperature variability. Environmental Research Letters, 15, 124073, https://doi.org/10.1088/1748-9326/abccf3.
Yao, Y., D. H. Luo, A. G. Dai, and I. Simmonds, 2017: Increased quasi stationarity and persistence of winter Ural blocking and Eurasian extreme cold events in response to Arctic warming. Part I: Insights from observational analyses. J. Climate, 30, 3549−3568, https://doi.org/10.1175/JCLI-D-16-0261.1.
Zhang, P., and Coauthors, 2020: Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point. Science, 370, 1095−1099, https://doi.org/10.1126/science.abb3368.
Zhang, R. N., and J. A. Screen, 2021: Diverse Eurasian winter temperature responses to Barents-Kara sea ice anomalies of different magnitudes and seasonality. Geophys. Res. Lett., 48, e2021GL092726, https://doi.org/10.1029/2021GL092726.
Zhang, X. D., and Coauthors, 2022: Extreme cold events from East Asia to North America in winter 2020/21: Comparisons, causes, and future implications. Adv. Atmos. Sci., 39, 553−565, https://doi.org/10.1007/s00376-021-1229-1.
Zhang, Y., T. Zou, and Y. K. Xue, 2019: An Arctic-Tibetan connection on subseasonal to seasonal time scale. Geophys. Res. Lett., 46, 2790−2799, https://doi.org/10.1029/2018GL081476.
Zhao, P., X. D. Zhang, X. J. Zhou, M. Ikeda, and Y. H. Yin, 2004: The sea ice extent anomaly in the North Pacific and its impact on the East Asian summer monsoon rainfall. J. Climate, 17, 3434−3447, https://doi.org/10.1175/1520-0442(2004)017<3434:TSIEAI>2.0.CO;2.