Andersen, S., R. Tonboe, L. Kaleschke, G. Heygster, and L. T. Pedersen, 2007: Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice. J. Geophys. Res., 112, C08004, https://doi.org/10.1029/2006JC003543.
Argence, S., D. Lambert, E. Richard, J. P. Chaboureau, and N. Söhne, 2008: Impact of initial condition uncertainties on the predictability of heavy rainfall in the Mediterranean: A case study. Quart. J. Roy. Meteorol. Soc., 134(636), 1775−1788, https://doi.org/10.1002/qj.314.
Barnes, E. A., 2013: Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys. Res. Lett., 40(17), 4734−4739, https://doi.org/10.1002/grl.50880.
Barthélemy A, Goosse H, Fichefet T, and O. Lecomte, 2018: On the sensitivity of Antarctic sea ice model biases to atmospheric forcing uncertainties. Climate Dyn., 51(4), 1585−1603, https://doi.org/10.1007/s00382-017-3972-7.
Brunet, G., and Coauthors, 2010: Collaboration of the weather and climate communities to advance subseasonal-to-seasonal prediction. Bull. Amer. Meteorol. Soc., 91(10), 1397−1406, https://doi.org/10.1175/2010BAMS3013.1.
Budikova, D., 2009: Role of Arctic sea ice in global atmospheric circulation: A review. Global and Planetary Change, 68(3), 149−163, https://doi.org/10.1016/j.gloplacha.2009.04.001.
Buizza, R., and M. Leutbecher, 2015: The forecast skill horizon. Quart. J. Roy. Meteorol. Soc., 141(693), 3366−3382, https://doi.org/10.1002/qj.2619.
Cavalieri, D. J., P. Gloersen, and W. J. Campbell, 1984: Determination of sea ice parameters with the NIMBUS 7 SMMR. J. Geophys. Res., 89, 5355−5369, https://doi.org/10.1029/JD089iD04p05355.
Cheung, H. H. N., W. Zhou, M. Y. T. Leung, C. M. Shun, S. M. Lee, and H. W. Tong, 2016: A strong phase reversal of the Arctic Oscillation in midwinter 2015/2016: Role of the stratospheric polar vortex and tropospheric blocking. J. Geophys. Res., 121(22), 13,443−13:457, https://doi.org/10.1002/2016JD025288.
Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7(9), 627−637, https://doi.org/10.1038/ngeo2234.
Comiso, J. C., 1986: Characteristics of Arctic winter sea ice from satellite multispectral microwave observations. J. Geophys. Res., 91, 975−994, https://doi.org/10.1029/JC091iC01p00975.
Coumou, D., and S. Rahmstorf, 2012: A decade of weather extremes. Nat. Clim. Change, 2(7), 491−496, https://doi.org/10.1038/nclimate1452.
Dai, G. K., M. Mu, and Z. N. Jiang, 2016: Relationships between optimal precursors triggering NAO onset and optimally growing initial errors during NAO prediction. J. Atmos. Sci., 73(1), 293−317, https://doi.org/10.1175/JAS-D-15-0109.1.
Day, J. J., I. Sandu, L. Magnusson, M. J. Rodwell, H. Lawrence, N. Bormann, and T. Jung, 2019: Increased Arctic influence on the midlatitude flow during Scandinavian Blocking episodes. Quart. J. Roy. Meteorol. Soc., 145, 3846−3862, https://doi.org/10.1002/qj.3673.
Deser, C., R. A. Tomas, and S. L. Peng, 2007: The transient atmospheric circulation response to North Atlantic SST and Sea Ice Anomalies. J. Climate, 20(18), 4751−4767, https://doi.org/10.1175/JCLI4278.1.
Duan, W. S., and F. F. Zhou, 2013: Non-linear forcing singular vector of a two-dimensional quasi-geostrophic model. Tellus A: Dynamic Meteorology and Oceanography, 65, 18452, https://doi.org/10.3402/tellusa.v65i0.18452.
Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, https://doi.org/10.1029/2012GL051000.
Gao, Y., and Coauthors, 2015: Arctic sea ice and Eurasian climate: A review. Adv. Atmos. Sci., 32(1), 92−114, https://doi.org/10.1007/s00376-014-0009-6.
Guan, H., Y. J. Zhu, E. Sinsky, W. Li, X. Q. Zhou, D. C. Hou, C. Melhauser, and R. Wobus, 2019: Systematic Error Analysis and Calibration of 2-m Temperature for the NCEP GEFS Reforecast of the Subseasonal Experiment (SubX) Project. Wea. Forecasting, 34(2), 361−376, https://doi.org/10.1175/WAF-D-18-0100.1.
Hersbach, H., and Coauthors, 2018: Operational global reanalysis: Progress, future directions and synergies with NWP. ERA Report Series 27.
Inoue, J., A. Yamazaki, J. Ono, K. Dethloff, M. Maturilli, R. Neuber, P. Edwards, and H. Yamaguchi, 2015: Additional Arctic observations improve weather and sea-ice forecasts for the Northern Sea Route. Scientific Reports, 5, 16868, https://doi.org/10.1038/srep16868.
Inoue, J., E. H. Masatake, T. Enomoto, and T. Kikuchi, 2011: Intercomparison of surface heat transfer near the arctic marginal ice zone for multiple reanalyses: A case study of September 2009. SOLA, 7, 57−60, https://doi.org/10.2151/sola.2011-015.
Inoue, J., M. E. Hori, and K. Takaya, 2012: The role of Barents Sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly. J. Climate, 25(7), 2561−2568, https://doi.org/10.1175/JCLI-D-11-00449.1.
Inoue, J., T. Enomoto, T. Miyoshi, and S. Yamane, 2009: Impact of observations from Arctic drifting buoys on the reanalysis of surface fields. Geophys. Res. Lett., 36, L08501, https://doi.org/10.1029/2009GL037380.
Jaiser, R., K. Dethloff, D. Handorf, A. Rinke and J. Cohen, 2012: Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus A: Dynamic Meteorology and Oceanography, 64(1), 11595, https://doi.org/10.3402/tellusa.v64i0.11595.
Jaiser, R., K. Dethloff, and D. Handorf, 2013: Stratospheric response to Arctic sea ice retreat and associated planetary wave propagation changes. Tellus A: Dynamic Meteorology and Oceanography, 65(1), 19375, https://doi.org/10.3402/tellusa.v65i0.19375.
Jiang, Z. N., M. Mu, and D. H. Luo, 2013: A study of the North Atlantic oscillation using conditional nonlinear optimal perturbation. J. Atmos. Sci., 70(3), 855−875, https://doi.org/10.1175/JAS-D-12-0148.1.
Jung, T., M. A. Kasper, T. Semmler, and S. Serrar, 2014: Arctic influence on subseasonal midlatitude prediction. Geophys. Res. Lett., 41, 3676−3680, https://doi.org/10.1002/2014GL059961.
Kaleschke, L., X. Tian-Kunze, N. Maaß, M. Mäkynen, and M. Drusch, 2012: Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period. Geophys. Res. Lett., 39, L05501, https://doi.org/10.1029/2012GL050916.
Kaleschke, L., X. Tian-Kunze, N. Maaß, R. Ricker, S. Hendricks, M. Drusch, 2015: Improved retrieval of sea ice thickness from SMOS and CryoSat-2. IEEE International Geoscience and Remote Sensing Symposium, IEEE, 5232−5235, https://doi.org/10.1109/IGARSS.2015.7327014.
Kattsov, V. M., V. E. Ryabinin, J. E. Overland, M. C. Serreze, M. Visbeck, J. E. Walsh, W. Meier, and X. D. Zhang, 2010: Arctic sea-ice change: A grand challenge of climate science. J. Glaciol., 56, 1115−1121, https://doi.org/10.3189/002214311796406176.
Kennedy, J., and R. Eberhart, 1995: Particle swarm optimization. Proc. IEEE International Conference on Neural Networks, Perth, Australia, IEEE, 1942−1948, https://doi.org/10.1109/ICNN.1995.488968.
Krinner, G., A. Rinke, K. Dethloff, and I. V. Gorodetskaya, 2010: Impact of prescribed Arctic sea ice thickness in simulations of the present and future climate. Climate Dyn., 35(4), 619−633, https://doi.org/10.1007/s00382-009-0587-7.
Kwok, R., and D. A. Rothrock, 2009: Decline in Arctic sea ice thickness from submarine and ICESat records: 1958-2008. Geophys. Res. Lett., 36(15), L15501, https://doi.org/10.1029/2009GL039035.
Labe, Z., G. Magnusdottir, and H. Stern, 2018: Variability of Arctic sea ice thickness using PIOMAS and the CESM Large Ensemble. J. Climate, 31(8), 3233−3247, https://doi.org/10.1175/JCLI-D-17-0436.1.
Lee, S., T. T. Gong, N. Johnson, S. B. Feldstein, and D. Pollard, 2011: On the possible link between tropical convection and the Northern Hemisphere Arctic surface air temperature change between 1958 and 2001. J. Climate, 24, 4350−4367, https://doi.org/10.1175/2011JCLI4003.1.
Li, Q. P., S. Yang, T. W. Wu, and X. W. Liu, 2017: Subseasonal dynamical prediction of East Asian cold surges. Wea. Forecasting, 32(4), 1675−1694, https://doi.org/10.1175/WAF-D-16-0209.1.
Lin, H., and Z. W. Wu, 2012: Contribution of Tibetan Plateau snow cover to the extreme winter conditions of 2009/10. Atmosphere-Ocean, 50(1), 86−94, https://doi.org/10.1080/07055900.2011.649036.
Lindsay, R., and A. Schweiger, 2015: Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. The Cryosphere, 9(1), 269−283, https://doi.org/10.5194/tc-9-269-2015.
Ling, T. J., M. Xu, X. Z. Liang, J. X. L. Wang, and Y. Noh, 2015: A multilevel ocean mixed layer model resolving the diurnal cycle: Development and validation. Journal of Advances in Modeling Earth Systems, 7, 1680−1692, https://doi.org/10.1002/2015MS000476.
Liu, J. P., J. A. Curry, H. Wang, M. R. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proceedings of the National Academy of Sciences of the United States of America, 109(11), 4074−4079, https://doi.org/10.1073/pnas.1114910109.
Liu, X., and Coauthors, 2016: MJO prediction using the sub-seasonal to seasonal forecast model of Beijing Climate Center. Climate Dyn., 48(9-10), 3283−3307, https://doi.org/10.1007/s00382-016-3264-7.
Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20(2), 130−141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
Lorenz, E. N., 1965: A study of the predictability of a 28-variable atmospheric model. Tellus, 17, 321−333, https://doi.org/10.1111/j.2153-3490.1965.tb01424.x.
Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21(3), 289−307, https://doi.org/10.1111/j.2153-3490.1969.tb00444.x.
Lorenz, E. N., 1982: Atmospheric predictability experiments with a large numerical model. Tellus, 34(6), 505−513, https://doi.org/10.1111/j.2153-3490.1982.tb01839.x.
Luo, D. H., Y. Yao, and S. B. Feldstein, 2014: Regime transition of the North Atlantic oscillation and the extreme cold event over Europe in January-February 2012. Mon. Wea. Rev., 142(12), 4735−4757, https://doi.org/10.1175/MWR-D-13-00234.1.
Luo, D. H., Y. Yao, and A. G. Dai, 2015: Decadal relationship between European blocking and the North Atlantic oscillation during 1978−2011. Part I: Atlantic conditions. J. Atmos. Sci., 72(3), 1152−1173, https://doi.org/10.1175/JAS-D-14-0039.1.
Luo, D. H., Y. Q. Xiao, Y. Yao, A. G. Dai, I. Simmonds, and C. L. E. Franzke, 2016: Impact of Ural blocking on winter warm Arctic-cold Eurasian anomalies. Part I: Blocking-induced amplification. J. Climate, 29, 3925−3947, https://doi.org/10.1175/JCLI-D-15-0611.1.
Matsumura, S., and Y. Kosaka, 2019: Arctic-Eurasian climate linkage induced by tropical ocean variability. Nature Communications, 10(1), 3441, https://doi.org/10.1038/s41467-019-11359-7.
Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nature Geoscience, 7(12), 869−873, https://doi.org/10.1038/ngeo2277.
Mu, M., 2013: Methods, current status, and prospect of targeted observation. Science China Earth Sciences, 56, 1997−2005, https://doi.org/10.1007/s11430-013-4727-x.
Mu, M., and Z. N. Jiang, 2008: A method to find perturbations that trigger blocking onset: Conditional nonlinear optimal perturbations. J. Atmos. Sci., 65(12), 3935−3946, https://doi.org/10.1175/2008JAS2621.1.
Mu, M., W. S. Duan, and B. Wang, 2003: Conditional nonlinear optimal perturbation and its applications. Nonlinear Processes in Geophysics, 10, 493−501, https://doi.org/10.5194/npg-10-493-2003.
Mu, M., W. S. Duan, Q. Wang, and R. Zhang, 2010: An extension of conditional nonlinear optimal perturbation approach and its applications. Nonlinear Processes in Geophysics, 17, 211−220, https://doi.org/10.5194/npg-17-211-2010.
Overland, J. E., K. R. Wood, and M. Y. Wang, 2011: Warm Arctic—cold continents: Climate impacts of the newly open Arctic Sea. Polar Research, 30(1), 15787, https://doi.org/10.3402/polar.v30i0.15787.
Pedersen, R. A., I. Cvijanovic, P. L. Langen, and B. M. Vinther, 2016: The impact of regional Arctic sea ice loss on atmospheric circulation and the NAO. J. Climate, 29(2), 889−902, https://doi.org/10.1175/JCLI-D-15-0315.1.
Petoukhov, V., S. Rahmstorf, S. Petri, and H. J. Schellnhuber, 2013: Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proceedings of the National Academy of Sciences of the United States of America, 110(14), 5336−5341, https://doi.org/10.1073/pnas.1222000110.
Ricker, R., S. Hendricks, L. Kaleschke, X. Tian-Kunze, J. King, and C. Haas, 2017: A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data. The Cryosphere, 11(4), 1607−1623, https://doi.org/10.5194/tc-11-1607-2017.
Rinke, A., W. Maslowski, K. Dethloff, and J. Clement, 2006: Influence of sea ice on the atmosphere: A study with an Arctic atmospheric regional climate model. J. Geophys. Res., 111(D16), https://doi.org/10.1029/2005JD006957.
Sato, K., J. Inoue, and M. Watanabe, 2014: Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter. Environmental Research Letters, 9, 084009, https://doi.org/10.1088/1748-9326/9/8/084009.
Sato, K., J. Inoue, A. Yamazaki, J. H. Kim, M. Maturilli, K. Dethloff, S. R. Hudson, and M. A. Granskog, 2017: Improved forecasts of winter weather extremes over midlatitudes with extra Arctic observations. J. Geophys. Res., 122, 775−787, https://doi.org/10.1002/2016JC012197.
Screen, J. A., and I. Simmonds, 2011: Erroneous Arctic temperature trends in the ERA-40 reanalysis: A closer look. J. Climate, 24(10), 2620−2627, https://doi.org/10.1175/2010JCLI4054.1.
Screen, J. A., and I. Simmonds, 2014: Amplified mid-latitude planetary waves favour particular regional weather extremes. Nat. Clim. Change, 4(8), 704−709, https://doi.org/10.1038/nclimate2271.
Semmler, T., T. Jung, and S. Serrar, 2016: Fast atmospheric response to a sudden thinning of Arctic sea ice. Climate Dyn., 46(3−4), 1015−1025, https://doi.org/10.1007/s00382-015-2629-7.
Semmler, T., T. Jung, M. A. Kasper, and S. Serrar, 2018: Using NWP to assess the influence of the Arctic atmosphere on midlatitude weather and climate. Adv. Atmos. Sci., 34(12), 5−13, https://doi.org/10.1007/s00376-017-6290-4.
Shepherd, T. G., 2016: Effects of a warming Arctic. Science, 353(6303), 989−990, https://doi.org/10.1126/science.aag2349.
Simmons, A. J., and A. Hollingsworth, 2002: Some aspects of the improvement in skill of numerical weather prediction. Quart. J. Roy. Meteorol. Soc., 128, 647−677, https://doi.org/10.1256/003590002321042135.
Storn, R., and K. Price, 1997: Differential evolution−A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11, 341−359, https://doi.org/10.1023/A:1008202821328.
Stroeve, J. C., M. C. Serreze, M. M. Holland, J. E. Kay, J. Malanik, and A. P. Barrett, 2012: The Arctic's rapidly shrinking sea ice cover: A research synthesis. Climatic Change, 110(3−4), 1005−1027, https://doi.org/10.1007/s10584-011-0101-1.
Sun, L. T., D. Allured, M. Hoerling, L. Smith, J. Perlwitz, D. Murray, and J. Eischeid, 2018: Drivers of 2016 record Arctic warmth assessed using climate simulations subjected to Factual and Counterfactual forcing. Weather and Climate Extremes, 19, 1−9, https://doi.org/10.1016/j.wace.2017.11.001.
Takaya, Y., F. Vitart, G. Balsamo, M. Balmaseda, M. Leutbecher, and F. Molteni, 2010: Implementation of an ocean mixed layer model in IFS. Proc. ECMWF Technical Memorandum No. 622.
Tao, S. Y., and J. Wei, 2008: Severe snow and freezing-rain in January 2008 in the southern China. Climatic and Environmental Research, 13, 337−350, https://doi.org/10.3878/j.issn.1006-9585.2008.04.01. (in Chinese)
Vihma, T., 2014: Effects of arctic sea ice decline on weather and climate: A review. Surveys in Geophysics, 35(5), 1175−1214, https://doi.org/10.1007/s10712-014-9284-0.
Wang, M. Y., and J. E. Overland, 2009: A sea ice free summer Arctic within 30 years? Geophys. Res. Lett., 36(7), L07502, https://doi.org/10.1029/2009GL037820.
Wang, Q., and M. Mu, 2015: A new application of conditional nonlinear optimal perturbation approach to boundary condition uncertainty. J. Geophys. Res., 120, 7979−7996, https://doi.org/10.1002/2015JC011095.
Wang, Q., M. Mu, and G. D. Sun, 2019: A useful approach to sensitivity and predictability studies in geophysical fluid dynamics: Conditional non-linear optimal perturbation. National Science Review, 2019, https://doi.org/10.1093/nsr/nwz039.
Wu, A. M., W. W. Hsieh, G. J. Boer, and F. W. Zwiers, 2007: Changes in the Arctic Oscillation under increased atmospheric greenhouse gases. Geophys. Res. Lett., 34(12), L12701, https://doi.org/10.1029/2007GL029344.
Wu, B. Y., K. Yang and J. A. Francis, 2017: A cold event in Asia during January-February 2012 and its possible association with Arctic Sea Ice Loss. J. Climate, 30(19), 7971−7990, https://doi.org/10.1175/JCLI-D-16-0115.1.
Xie, J. B., M. H. Zhang and H. L. Liu, 2019: Role of Arctic Sea Ice in the 2014-2015 Eurasian warm winter. Geophys. Res. Lett., 46(1), 337−345, https://doi.org/10.1029/2018GL080793.
Yao, Y., and D. H. Luo, 2015: Do European blocking events precede North Atlantic Oscillation events? Adv. Atmos. Sci., 32(8), 1106−1118, https://doi.org/10.1007/s00376-015-4209-5.
Yao, Y., D. H. Luo, A. G. Dai, and I. Simmonds, 2017: Increased quasi stationarity and persistence of winter Ural blocking and Eurasian extreme cold events in response to arctic warming. Part I: Insights from observational analyses. J. Climate, 30(10), 3549−3568, https://doi.org/10.1175/JCLI-D-16-0261.1.
Ye, K. H., T. Jung, and T. Semmler, 2018: The influences of the Arctic troposphere on the midlatitude climate variability and the recent Eurasian cooling. J. Geophys. Res., 123, 10 162−10 184, https://doi.org/10.1029/2018JD028980.
Zhang, J. L., and D. A. Rothrock., 2003: Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon. Wea. Rev., 131(11), 845−861, https://doi.org/10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2.
Zhou, W., J. C. L. Chan, W. Chen, J. Ling, J. G. Pinto, and Y. P. Shao, 2009: Synoptic-scale controls of persistent low temperature and icy weather over southern China in January 2008. Mon. Wea. Rev., 137(11), 3978−3991, https://doi.org/10.1175/2009MWR2952.1.