American Meteorological Society, 2017: Atmospheric river. Glossary of Meteorology. Available from https://glossary.ametsoc.org/wiki/Atmospheric_river.
Cannon, F., and Coauthors, 2020: Observations and predictability of a high-impact narrow cold-frontal rainband over Southern California on 2 February 2019. Wea. Forecasting, 35, 2083−2097, https://doi.org/10.1175/Waf-D-20-0012.1.
Chen, T., F. H. Zhang, C. Yu, J. Ma, X. D. Zhang, X. L. Shen, F. Zhang, and Q. Luo, 2020: Synoptic analysis of extreme Meiyu precipitation over Yangtze River Basin during June-July 2020. Meteorological Monthly, 46, 1415−1426, https://doi.org/10.7519/j.issn.1000-0526.2020.11.003. (in Chinese with English abstract
Cheng, T. F., M. Q. Lu, and L. Dai, 2019: The zonal oscillation and the driving mechanisms of the extreme western North Pacific subtropical high and its impacts on East Asian summer precipitation. J. Climate, 32, 3025−3050, https://doi.org/10.1175/JCLI-D-18-0076.1.
Cordeira, J. M., and F. M. Ralph, 2021: A summary of GFS ensemble integrated water vapor transport forecasts and skill along the U.S. west coast during water years 2017-20. Wea. Forecasting, 36, 361−377, https://doi.org/10.1175/WAF-D-20-0121.1.
Cordeira, J. M., F. M. Ralph, and B. J. Moore, 2013: The development and evolution of two atmospheric rivers in proximity to western North Pacific tropical cyclones in October 2010. Mon. Wea. Rev., 141, 4234−4255, https://doi.org/10.1175/Mwr-D-13-00019.1.
Cordeira, J. M., F. M. Ralph, A. Martin, N. Gaggini, J. R. Spackman, P. J. Neiman, J. J. Rutz, and R. Pierce, 2017: Forecasting atmospheric rivers during CalWater 2015. Bull. Amer. Meteor. Soc., 98, 449−459, https://doi.org/10.1175/Bams-D-15-00245.1.
Dai, L., T. F. Cheng, and M. Q. Lu, 2020: Summer monsoon rainfall patterns and predictability over southeast China. Water Resour. Res., 56, e2019WR025515, https://doi.org/10.1029/2019WR025515.
Dai, L., T. F. Cheng, and M. Q. Lu, 2021: Define East Asian monsoon annual cycle via a self-organizing map-based approach. Geophys. Res. Lett., 48, e2020GL089542, https://doi.org/10.1029/2020GL089542.
DeFlorio, M. J., D. E. Waliser, B. Guan, D. A. Lavers, F. M. Ralph, and F. Vitart, 2018: Global assessment of atmospheric river prediction skill. Journal of Hydrometeorology, 19, 409−426, https://doi.org/10.1175/Jhm-D-17-0135.1.
Dettinger, M., F. M. Ralph, and D. Lavers, 2015: Setting the stage for a global science of atmospheric rivers. Eos, 96, https://doi.org/10.1029/2015EO038675.
Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan, 2011: Atmospheric rivers, floods and the water resources of California. Water, 3, 445−478, https://doi.org/10.3390/w3020445.
Ding, Y. H., P. Liang, Y. J. Liu, and Y. C. Zhang, 2020: Multiscale variability of Meiyu and its prediction: A new review. J. Geophys. Res.: Atmos., 125, e2019JD031496, https://doi.org/10.1029/2019JD031496.
Esfandiari, N., and H. Lashkari, 2020: Identifying atmospheric river events and their paths into Iran. Theor. Appl. Climatol., 140, 1125−1137, https://doi.org/10.1007/s00704-020-03148-w.
Gimeno, L., R. Nieto, M. Vázquez, and D. A. Lavers, 2014: Atmospheric rivers: A mini-review. Frontiers in Earth Science, 2, 2, https://doi.org/10.3389/feart.2014.00002.
Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res.: Atmos., 120, 12514−12535, https://doi.org/10.1002/2015jd024257.
Harada, Y., and Coauthors, 2016: The JRA-55 reanalysis: Representation of atmospheric circulation and climate variability. J. Meteor. Soc. Japan. Ser. II, 94, 269−302, https://doi.org/10.2151/jmsj.2016-015.
Hersbach, H., and Coauthors, 2018a: ERA5 hourly data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available from https://doi.org/10.24381/cds.adbb2d47.
Hersbach, H., and Coauthors, 2018b: ERA5 hourly data on pressure levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available from https://doi.org/10.24381/cds.bd0915c6.
Hu, H. C., F. Dominguez, Z. Wang, D. A. Lavers, G. Zhang, and F. M. Ralph, 2017: Linking atmospheric river hydrological impacts on the U.S. west coast to rossby wave breaking. J. Climate, 30, 3381−3399, https://doi.org/10.1175/Jcli-D-16-0386.1.
Huffman, G. J., E. F. Stocker, D. T. Bolvin, E. J. Nelkin, and J. Tan, 2019: GPM IMERG Late Precipitation L3 1 day 0.1 degree x 0.1 degree V06, Edited by Andrey Savtchenko, Greenbelt, MD. Goddard Earth Sciences Data and Information Services Center (GES DISC), https://doi.org/105067/GPM/IMERG/3A-DAY/05.
Joos, H., and H. Wernli, 2012: Influence of microphysical processes on the potential vorticity development in a warm conveyor belt: A case-study with the limited-area model COSMO. Quart. J Roy. Meteor. Soc., 138, 407−418, https://doi.org/10.1002/qj.934.
Kamae, Y., W. Mei, and S. P. Xie, 2017: Climatological relationship between warm season atmospheric rivers and heavy rainfall over East Asia. J. Meteor. Soc. Japan. Ser. II, 95, 411−431, https://doi.org/10.2151/jmsj.2017-027.
Keyser, D., M. J. Reeder, and R. J. Reed, 1988: A generalization of petterssen’s frontogenesis function and its relation to the forcing of vertical motion. Mon. Wea. Rev., 116, 762−781, https://doi.org/10.1175/1520-0493(1988)116<0762:Agopff>2.0.Co;2.
Kim, J., H. Moon, B. Guan, D. E. Waliser, J. Choi, T. Y. Gu, and Y. H. Byun, 2020: Precipitation characteristics related to atmospheric rivers in East Asia. International Journal of Climatology, 41, E2244−E2257, https://doi.org/10.1002/joc.6843.
Knippertz, P., 2007: Tropical-extratropical interactions related to upper-level troughs at low latitudes. Dyn. Atmos. Oceans, 43, 36−62, https://doi.org/10.1016/j.dynatmoce.2006.06.003.
Knippertz, P., and H. Wernli, 2010: A lagrangian climatology of tropical moisture exports to the northern hemispheric extratropics. J. Climate, 23, 987−1003, https://doi.org/10.1175/2009jcli3333.1.
Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan. Ser. II, 93, 5−48, https://doi.org/10.2151/jmsj.2015-001.
Lamjiri, M. A., M. D. Dettinger, F. M. Ralph, and B. Guan, 2017: Hourly storm characteristics along the U.S. west coast: Role of atmospheric rivers in extreme precipitation. Geophys. Res. Lett., 44, 7020−7028, https://doi.org/10.1002/2017gl074193.
Lee, S. S., Y. W. Seo, K. J. Ha, and J. G. Jhun, 2013: Impact of the western North Pacific subtropical high on the East Asian monsoon precipitation and the Indian Ocean precipitation in the boreal summertime. Asia-Pacific Journal of Atmospheric Sciences, 49, 171−182, https://doi.org/10.1007/s13143-013-0018-x.
Liang, J., and Y. Y. Yong, 2020: Climatology of atmospheric rivers in the Asian monsoon region. International Journal of Climatology, 41, E801−E818, https://doi.org/10.1002/joc.6729.
Liu, C. J., and E. A. Barnes, 2015: Extreme moisture transport into the Arctic linked to Rossby wave breaking. J. Geophys. Res.: Atmos., 120, 3774−3788, https://doi.org/10.1002/2014jd022796.
Liu, Y. Y., and Y. H. Ding, 2020: Characteristics and possible causes for the extreme Meiyu in 2020. Meteorological Monthly, 46, 1393−1404, https://doi.org/10.7519/j.issn.1000-0526.2020.11.001. (in Chinese with English abstract
Luo, Y. L., H. Wang, R. H. Zhang, W. M. Qian, and Z. Z. Luo, 2013: Comparison of rainfall characteristics and convective properties of monsoon precipitation systems over South China and the Yangtze and Huai River Basin. J. Climate, 26, 110−132, https://doi.org/10.1175/Jcli-D-12-00100.1.
May, R. M., and Coauthors, 2020: MetPy: A python package for meteorological data. Available from https://doi.org/10.5065/D6WW7G29.
Miller, J. E., 1948: On the concept of frontogenesis. J. Atmos. Sci., 5, 169−171, https://doi.org/10.1175/1520-0469(1948)005<0169:Otcof>2.0.Co;2.
Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, and M. D. Dettinger, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations. Journal of Hydrometeorology, 9, 22−47, https://doi.org/10.1175/2007jhm855.1.
Newell, R. E., N. E. Newell, Y. Zhu, and C. Scott, 1992: Tropospheric rivers - A pilot-study. Geophys. Res. Lett., 19, 2401−2404, https://doi.org/10.1029/92gl02916.
Pan, M. X., and M. Q. Lu, 2019: A novel atmospheric river identification algorithm. Water Resour. Res., 55, 6069−6087, https://doi.org/10.1029/2018wr024407.
Pan, M. X., and M. Q. Lu, 2020: East Asia atmospheric river catalog: Annual cycle, transition mechanism, and precipitation. Geophys. Res. Lett., 47, e2020GL089477, https://doi.org/10.1029/2020gl089477.
Pirret, J. S. R., P. Knippertz, and T. M. Trzeciak, 2016: Drivers for the deepening of severe European windstorms and their impacts on forecast quality. Quart. J. Roy. Meteor. Soc., 143, 309−320, https://doi.org/10.1002/qj.2923.
Ralph, F. M., P. J. Neiman, G. N. Kiladis, K. Weickmann, and D. W. Reynolds, 2011: A multiscale observational case study of a Pacific atmospheric river exhibiting tropical-extratropical connections and a mesoscale frontal wave. Mon. Wea. Rev., 139, 1169−1189, https://doi.org/10.1175/2010MWR3596.1.
Ralph, F. M., M. D. Dettinger, M. M. Cairns, T. J. Galarneau, and J. Eylander, 2018: Defining "Atmospheric River": How the Glossary of Meteorology helped resolve a debate. Bull. Amer. Meteor. Soc., 99, 837−839, https://doi.org/10.1175/Bams-D-17-0157.1.
Ralph, F. M., J. J. Rutz, J. M. Cordeira, M. Dettinger, M. Anderson, D. Reynolds, L. J. Schick, and C. Smallcomb, 2019: A scale to characterize the strength and impacts of atmospheric rivers. Bull. Amer. Meteor. Soc., 100, 269−289, https://doi.org/10.1175/Bams-D-18-0023.1.
Ralph, F. M., and Coauthors, 2017a: Dropsonde observations of total integrated water vapor transport within north pacific atmospheric rivers. Journal of Hydrometeorology, 18, 2577−2596, https://doi.org/10.1175/Jhm-D-17-0036.1.
Ralph, F. M., and Coauthors, 2017b: Atmospheric rivers emerge as a global science and applications focus. Bull. Amer. Meteor. Soc., 98, 1969−1973, https://doi.org/10.1175/Bams-D-16-0262.1.
Ralph, F. M., and Coauthors, 2020: West coast forecast challenges and development of atmospheric river reconnaissance. Bull. Amer. Meteor. Soc., 101, E1357−E1377, https://doi.org/10.1175/BAMS-D-19-0183.1.
Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142(2), 905−921, https://doi.org/10.1175/MWR-D-13-00168.1.
Rutz, J. J., and Coauthors, 2019: The atmospheric river tracking method intercomparison project (ARTMIP): Quantifying uncertainties in atmospheric river climatology. J. Geophys. Res.: Atmos., 124, 13 777−13 802, https://doi.org/10.1029/2019JD030936.
Shields, C. A., J. J. Rutz, L. R. Leung, F. M. Ralph, M. Wehner, T. O'Brien, and R. Pierce, 2019: Defining uncertainties through comparison of atmospheric river tracking methods. Bull. Amer. Meteor. Soc., 100, ES93−ES96, https://doi.org/10.1175/Bams-D-18-0200.1.
Shields, C. A., and Coauthors, 2018: Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Project goals and experimental design. Geoscientific Model Development, 11, 2455−2474, https://doi.org/10.5194/gmd-11-2455-2018.
Waliser, D., and B. Guan, 2017: Extreme winds and precipitation during landfall of atmospheric rivers. Nature Geoscience, 10, 179−183, https://doi.org/10.1038/Ngeo2894.
Wang, B., and LinHo, 2002: Rainy season of the Asian-Pacific summer monsoon. J. Climate, 15, 386−398, https://doi.org/10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2.
Wei, K., C. J. Ouyang, H. T. Duan, Y. L. Li, M. X. Chen, J. Ma, H. C. An, and S. Zhou, 2020: Reflections on the catastrophic 2020 Yangtze River Basin flooding in southern China. The Innovation, 1, 100038, https://doi.org/10.1016/j.xinn.2020.100038.
Wick, G. A., P. J. Neiman, and F. M. Ralph, 2013: Description and validation of an automated objective technique for identification and characterization of the integrated water vapor signature of atmospheric rivers. IEEE Trans. Geosci. Remote Sens., 51, 2166−2176, https://doi.org/10.1109/Tgrs.2012.2211024.
Zhang, F. H., T. Chen, F. Zhang, X. L. Shen, and Y. Lan, 2020: Extreme features of severe precipitation in Meiyu period over the middle and lower reaches of Yangtze River Basin in June−July 2020. Meteorological Monthly, 46, 1405−1414, https://doi.org/10.7519/j.issn.1000-0526.2020.11.002. (in Chinese with English abstract
Zhao, N., A. Manda, X. Guo, K. Kikuchi, T. Nasuno, M. Nakano, Y. Zhang, and B. Wang, 2021: A lagrangian view of moisture transport related to the heavy rainfall of July 2020 in Japan: Importance of the moistening over the subtropical regions. Geophys. Res. Lett., 48, e2020GL091441, https://doi.org/10.1029/2020gl091441.
Zhu, Y., and R. E. Newell, 1994: Atmospheric rivers and bombs. Geophys. Res. Lett., 21, 1999−2002, https://doi.org/10.1029/94gl01710.
Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725−735, https://doi.org/10.1175/1520-0493(1998)126<0725:Apafmf>2.0.Co;2.