Bösch, H., and Coauthors, 2006: Space-based near-infrared CO2 measurements: Testing the Orbiting Carbon Observatory retrieval algorithm and validation concept using SCIAMACHY observations over Park Falls, Wisconsin. J. Geophys. Res., 111, D23302, https://doi.org/10.1029/2006JD007080.
Bovensmann, H., J. P. Burrows, M. Buchwitz, J. Frerick, S. Noël, V. V. Rozanov, K. V. Chance, and A. P. H. Goede, 1999: SCIAMACHY: Mission objectives and measurement modes. J. Atmos. Sci., 56, 127−150, https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2.
Buchwitz, M., and Coauthors, 2015: The Greenhouse Gas Climate Change Initiative (GHG-CCI): Comparison and quality assessment of near-surface-sensitive satellite-derived CO2 and CH4 global data sets. Remote Sensing of Environment, 162, 344−362, https://doi.org/10.1016/j.rse.2013.04.024.
Chen, X., D. X. Yang, Z. N. Cai, Y. Liu, and R. J. D. Spurr, 2017: Aerosol retrieval sensitivity and error analysis for the cloud and aerosol polarimetric imager on board TanSat: The effect of multi-angle measurement. Remote Sensing, 9(2), 183, https://doi.org/10.3390/rs9020183.
Crisp, D., C. E. Miller, and P. L. DeCola, 2008: NASA orbiting carbon observatory: Measuring the column averaged carbon dioxide mole fraction from space. Journal of Applied Remote Sensing, 2(1), 023508, https://doi.org/10.1117/1.2898457.
Pinty B., and Coauthors, 2017: An Operational Anthropogenic CO2 Emissions Monitoring & Verification Support capacity—Baseline Requirements, Model Components and Functional Architecture, European Commission Joint Research Centre, EUR 28736 EN, DOI: 10.2760/39384.
Kuze, A., H. Suto, M. Nakajima, and T. Hamazaki, 2009: Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl. Opt., 48(35), 6716−6733, https://doi.org/10.1364/AO.48.006716.
Liu, Y., and D. X. Yang, 2016: Advancements in theory of GHG observation from space. Science Bulletin, 61(5), 349−352, https://doi.org/10.1007/s11434-016-1022-1.
Liu, Y., and Coauthors, 2018: The TanSat mission: Preliminary global observations. Science Bulletin, 63, 1200−1207, https://doi.org/10.1016/j.scib.2018.08.004.
Miller, C. E., and Coauthors, 2007: Precision requirements for space-based XCO2 data. J. Geophys. Res., 112, D10314, https://doi.org/10.1029/2006JD007659.
Ran, Y. H., and X. Li, 2019: TanSat: A new star in global carbon monitoring from China. Science Bulletin, 64(5), 284−285, https://doi.org/10.1016/j.scib.2019.01.019.
Vogel, F. R., and Coauthors, 2019: XCO2 in an emission hot-spot region: The COCCON Paris campaign 2015. Atmospheric Chemistry and Physics, 19, 3271−3285, https://doi.org/10.5194/acp-19-3271-2019.
Wang, L., C. Lin, Z. H. Ji, Y. Q. Zheng, and Y. M. Bi, 2018: Preflight diffuser's calibration of carbon dioxide spectrometer of TanSat. Optics and Precision Engineering, 26(8), 1967−1976, https://doi.org/10.3788/OPE.20182608.1967. (in Chinese with English abstract
Yang, D. X., Y. Liu, Z. N. Cai, J. B. Deng, J. Wang, and X. Chen, 2015: An advanced carbon dioxide retrieval algorithm for satellite measurements and its application to GOSAT observations. Science Bulletin, 60(23), 2063−2066, https://doi.org/10.1007/s11434-015-0953-2.
Yang, D. X., Y. Liu, Z. N. Cai, X. Chen, L. Yao, and D. R. Lu, 2018: First global carbon dioxide maps produced from TanSat measurements. Adv. Atmos. Sci., 35, 621−623, https://doi.org/10.1007/s00376-018-7312-6.
Yang, D. X., and Coauthors, 2020: Toward high precision XCO2 Retrievals from TanSat observations: Retrieval improvement and validation against TCCON measurements. J. Geophys. Res., https://doi.org/10.1002/essoar.10502909.1.