CMA Climate Change Centre, 2020: Blue Book on Climate Change in China (2020). Science Press. (in Chinese)
Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7, 627−637, https://doi.org/10.1038/ngeo2234.
Diffenbaugh, N. S., and Coauthors, 2017: Quantifying the influence of global warming on unprecedented extreme climate events. Proceedings of the National Academy of Sciences of the United States of America, 114(19), 4881−4886, https://doi.org/10.1073/pnas.1618082114.
Ding, Y. H., Z. Y. Wang, Y. F. Song, and J. Zhang, 2008: Causes of the unprecedented freezing disaster in January 2008 and its possible association with the global warming. Acta Meteorologica Sinica, 66, 808−825, https://doi.org/10.3321/j.issn:0577-6619.2008.05.014.
Du, Y., L. Yang, and S.-P. Xie, 2011: Tropical Indian Ocean influence on Northwest Pacific tropical cyclones in summer following strong El Niño. J. Climate, 24, 315−322, https://doi.org/10.1175/2010JCLI3890.1.
Enfield, D. B., A. M. Mestas-Nuñez, D. A. Mayer, and L. Cid-Serrano, 1999: How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures? J Geophys. Res., 104, 7841−7848, https://doi.org/10.1029/1998JC900109.
Francis, J. A., and S. J Vavrus, 2015: Evidence for a wavier jet stream in response to rapid Arctic warming. Environmental Research Letters, 10(1), 014005, https://doi.org/10.1088/1748-9326/10/1/014005.
Gao, S., Z. F. Chen, and W. Zhang, 2018: Impacts of tropical North Atlantic SST on western North Pacific landfalling tropical cyclones. J. Climate, 31, 853−862, https://doi.org/10.1175/JCLI-D-17-0325.1.
Halpert, M. S., and C. F. Ropelewski, 1992: Surface temperature patterns associated with the southern Oscillation. J. Climate, 5, 577−593, https://doi.org/10.1175/1520-0442(1992)005<0577:STPAWT>2.0.CO;2.
Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686−5699, https://doi.org/10.1175/JCLI3990.1.
Kim, B.-M., S.-W. Son, S.-K. Min, J.-H. Jeong, S.-J. Kim, X. D. Zhang, T. Shim, and J.-H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nature Communications, 5, 4646, https://doi.org/10.1038/ncomms5646.
Kug, J.-S., J.-H. Jeong, Y.-S. Jang, B.-M. Kim, C. K. Folland. S.-K. Min, and S.-W. Son, 2015: Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nature Geoscience, 8, 759−762, https://doi.org/10.1038/ngeo2517.
Li, C., B. Stevens, and J. Marotzke, 2015: Eurasian winter cooling in the warming hiatus of 1998−2012. Geophys. Res. Lett., 42, 8131−8139, https://doi.org/10.1002/2015GL065327.
McCusker, K. E., J. C. Fyfe, and M. Sigmond, 2016: Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea-ice loss. Nature Geoscience, 9, 838−842, https://doi.org/10.1038/ngeo2820.
Mori, M., Y. Kosaka, M. Watanabe, H. Nakamura, and M. Kimoto, 2019: A reconciled estimate of the influence of Arctic sea-ice loss on recent Eurasian cooling. Nature Climate Change, 9, 123−129, https://doi.org/10.1038/s41558-018-0379-3.
Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, and J. Ukita, 2015: A negative phase shift of the winter AO/NAO due to the recent Arctic sea-ice reduction in late autumn. J. Geophys. Res., 120, 3209−3227, https://doi.org/10.1002/2014JD022848.
Ogawa, F., and Coauthors, 2018: Evaluating impacts of recent Arctic sea ice loss on the northern hemisphere winter climate change. Geophys. Res. Lett., 45, 3255−3263, https://doi.org/10.1002/2017GL076502.
Peings, Y., and G. Magnusdottir, 2014: Response of the wintertime northern Hemisphere Atmospheric circulation to current and projected arctic Sea Ice decline: A numerical study with CAM5. J. Climate, 27, 244−264, https://doi.org/10.1175/JCLI-D-13-00272.1.
Reed, T. R., 1933: The North American high-level anticyclone. Mon. Wea. Rev., 61(11), 321−325, https://doi.org/10.1175/1520-0493(1933)61<321:TNAHA>2.0.CO;2.
Takaya, Y., I. Ishikawa, C. Kobayashi, H. Endo, H., and T. Ose, 2020: Enhanced Meiyu-Baiu rainfall in early summer 2020: Aftermath of the 2019 super IOD event. Geophys. Res. Lett., 47, e2020GL090671, https://doi.org/10.1029/2020GL090671.
Trenberth, K. E., J. T. Fasullo, and T. G. Shepherd, 2015: Attribution of climate extreme events. Nature Climate Chang, 5, 725−730, https://doi.org/10.1038/nclimate2657.
Ueda, H., K. Miwa, and Y. Kamae, 2018: Seasonal modulation of tropical cyclone occurrence associated with coherent Indo-Pacific variability during decaying phase of El Niño. J. Meteor. Soc. Japan, 96, 381−390, https://doi.org/10.2151/jmsj.2018-044.
Wang, C. Z., 2019: Three-ocean interactions and climate variability: A review and perspective. Climate Dyn., 53, 5119−5136, https://doi.org/10.1007/s00382-019-04930-x.
Zheng, F., and Coauthors, 2021: The 2020/21 extremely cold winter in China influenced by the synergistic effect of La Niña and Warm Arctic. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-021-1033-y.
Zheng, J. Y., and C. Z. Wang, 2021: Influences of three oceans on record-breaking rainfall over the Yangtze River Valley in June 2020. Science China Earth Sciences, https://doi.org/10.1007/s11430-020-9758-9.
Zhou, Z.-Q., S.-P. Xie, and R. H. Zhang, 2021: Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proceedings of the National Academy of Sciences of the United States of America, 118, e2022255118, https://doi.org/10.1073/pnas.2022255118.