Aiken, A. C., and Coauthors, 2009: Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0)−Part 1: Fine particle composition and organic source apportionment. Atmospheric Chemistry and Physics, 9, 6633−6653, https://doi.org/10.5194/acp-9-6633-2009.
Ahern, A. T., and Coauthors, 2019: Production of secondary organic aerosol during aging of biomass burning smoke from fresh fuels and its relationship to VOC precursors. J. Geophys. Res., 124, 3583−3606, https://doi.org/10.1029/2018JD029068.
Alfarra, M. R., and Coauthors, 2007: Identification of the mass spectral signature of organic aerosols from wood burning emissions. Environ. Sci. Technol., 41, 5770−5777, https://doi.org/10.1021/es062289b.
Allan, J. D., and Coauthors, 2010: Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities. Atmospheric Chemistry and Physics, 10, 647−668, https://doi.org/10.5194/acp-10-647-2010.
Ayres, B. R., and Coauthors, 2015: Organic nitrate aerosol formation via NO3+ biogenic volatile organic compounds in the southeastern United States. Atmospheric Chemistry and Physics, 15, 13377−13392, https://doi.org/10.5194/acp-15-13377-2015.
Beddows, D. C. S., and R. M. Harrison, 2019: Receptor modelling of both particle composition and size distribution from a background site in London, UK−A two-step approach. Atmospheric Chemistry and Physics, 19, 4863−4876, https://doi.org/10.5194/acp-19-4863-2019.
Bertman, S. B., and Coauthors, 1995: Evolution of alkyl nitrates with air mass age. J. Geophys. Res., 100, 22805−22813, https://doi.org/10.1029/95JD02030.
Bi, X. H., and Coauthors, 2015: Real-time and single-particle volatility of elemental carbon-containing particles in the urban area of Pearl River Delta region, China. Atmos. Environ., 118, 194−202, https://doi.org/10.1016/j.atmosenv.2015.08.012.
Bilde, M., and Coauthors, 2015: Saturation vapor pressures and transition enthalpies of low-volatility organic molecules of atmospheric relevance: From dicarboxylic acids to complex mixtures. Chemical Reviews, 115, 4115−4156, https://doi.org/10.1021/cr5005502.
Bougiatioti, A., and Coauthors, 2014: Processing of biomass-burning aerosol in the eastern Mediterranean during summertime. Atmospheric Chemistry and Physics, 14, 4793−4807, https://doi.org/10.5194/acp-14-4793-2014.
Boyd, C. M., J. Sanchez, L. Xu, A. J. Eugene, T. Nah, W. Y. Tuet, M. I. Guzman, and N. L. Ng, 2015: Secondary organic aerosol formation from the β-pinene+NO3 system: Effect of humidity and peroxy radical fate. Atmospheric Chemistry and Physics, 15, 7497−7522, https://doi.org/10.5194/acp-15-7497-2015.
Boyd, C. M., T. Nah, L. Xu, T. Berkemeier, and N. L. Ng, 2017: Secondary Organic Aerosol (SOA) from nitrate radical oxidation of monoterpenes: Effects of temperature, dilution, and humidity on aerosol formation, mixing, and evaporation. Environ. Sci. Technol., 51, 7831−7841, https://doi.org/10.1021/acs.est.7b01460.
Bruns, E. A., and Coauthors, 2010: Comparison of FTIR and particle mass spectrometry for the measurement of particulate organic nitrates. Environ. Sci. Technol., 44, 1056−1061, https://doi.org/10.1021/es9029864.
Canagaratna, M. R., and Coauthors, 2007: Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrometry Reviews, 26, 185−222, https://doi.org/10.1002/mas.20115.
Canagaratna, M. R., and Coauthors, 2015: Elemental ratio measurements of organic compounds using aerosol mass spectrometry: Characterization, improved calibration, and implications. Atmospheric Chemistry and Physics, 15, 253−272, https://doi.org/10.5194/acp-15-253-2015.
Cao, L.-M., X.-F. Huang, Y.-Y. Li, M. Hu, and L.-Y. He, 2018: Volatility measurement of atmospheric submicron aerosols in an urban atmosphere in southern China. Atmospheric Chemistry and Physics, 18, 1729−1743, https://doi.org/10.5194/acp-18-1729-2018.
Cao, L.-M., X.-F. Huang, C. Wang, Q. Zhu, and L.-Y. He, 2019: Characterization of submicron aerosol volatility in the regional atmosphere in Southern China. Chemosphere, 236, 124383, https://doi.org/10.1016/j.chemosphere.2019.124383.
Charlson, R. J., and J. Heintzenberg, 1995: Aerosol Forcing of Climate. Wiley, Chichester, 184-195.
Cubison, M. J., and Coauthors, 2011: Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies. Atmospheric Chemistry and Physics, 11, 12049−12064, https://doi.org/10.5194/acp-11-12049-2011.
Dassios, K. G., and S. N. Pandis, 1999: The mass accommodation coefficient of ammonium nitrate aerosol. Atmos. Environ., 33, 2993−3003, https://doi.org/10.1016/S1352-2310(99)00079-5.
DeCarlo, P. F., and Coauthors, 2006: Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. Analytical Chemistry, 78, 8281−8289, https://doi.org/10.1021/ac061249n.
Dockery, D. W., C. A. Pope, X. P. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris Jr., and F. E. Speizer, 1993: An association between air pollution and mortality in six US cities. The New England Journal of Medicine, 329, 1753−1759, https://doi.org/10.1056/NEJM199312093292401.
Farmer, D. K., A. Matsunaga, K. S. Docherty, J. D. Surratt, J. H. Seinfeld, P. J. Ziemann, and J. L. Jimenez, 2010: Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry. Proceedings of the National Academy of Sciences of the United States of America, 107, 6670−6675, https://doi.org/10.1073/pnas.0912340107.
Fry, J. L., and Coauthors, 2009: Organic nitrate and secondary organic aerosol yield from NO3 oxidation of β-pinene evaluated using a gas-phase kinetics/aerosol partitioning model. Atmospheric Chemistry and Physics, 9, 1431−1449, https://doi.org/10.5194/acp-9-1431-2009.
Fry, J. L., and Coauthors, 2013: Observations of gas- and aerosol-phase organic nitrates at BEACHON-RoMBAS 2011. Atmospheric Chemistry and Physics, 13, 8585−8605, https://doi.org/10.5194/acp-13-8585-2013.
Gu, J. X., Z. P. Bai, A. X. Liu, L. P. Wu, Y. Y. Xie, W. F. Li, H. Y. Dong, and X. Zhang, 2010: Characterization of atmospheric organic carbon and element carbon of PM2.5 and PM10 at Tianjin, China. Aerosol and Air Quality Research, 10, 167−176, https://doi.org/10.4209/aaqr.2009.12.0080.
Hao, L. Q., and Coauthors, 2014: Atmospheric submicron aerosol composition and particulate organic nitrate formation in a boreal forestland-urban mixed region. Atmospheric Chemistry and Physics, 14, 17263−17298, https://doi.org/10.5194/acp-14-13483-2014.
Haywood, J., and O. Boucher, 2000: Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys., 38, 513−543, https://doi.org/10.1029/1999RG000078.
Holzinger, R., C. Warneke, A. Hansel, A. Jordan, W. Lindinger, D. H. Scharffe, G. Schade, and P. J. Crutzen, 1999: Biomass burning as a source of formaldehyde, acetaldehyde, methanol, acetone, acetonitrile, and hydrogen cyanide. Geophys. Res. Lett., 26, 1161−1164, https://doi.org/10.1029/1999GL900156.
Huang, X.-F., and Coauthors, 2010: Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing olympic games using an aerodyne high-resolution aerosol mass spectrometer. Atmospheric Chemistry and Physics, 10, 8933−8945, https://doi.org/10.5194/acp-10-8933-2010.
Huang, X.-F., L.-Y. He, L. Xue, T.-L. Sun, L.-W. Zeng, Z.-H. Gong, M. Hu, and T. Zhu, 2012: Highly time-resolved chemical characterization of atmospheric fine particles during 2010 Shanghai World Expo. Atmospheric Chemistry and Physics, 12, 4897−4907, https://doi.org/10.5194/acp-12-4897-2012.
Huang, X.-F., and Coauthors, 2013: Highly time-resolved carbonaceous aerosol characterization in Yangtze River Delta of China: Composition, mixing state and secondary formation. Atmos. Environ., 64, 200−207, https://doi.org/10.1016/j.atmosenv.2012.09.059.
Huffman, J. A., P. J. Ziemann, J. T. Jayne, D. R. Worsnop, and J. L. Jimenez, 2008: Development and characterization of a fast-stepping/scanning thermodenuder for chemically-resolved aerosol volatility measurements. Aerosol Science and Technology, 42, 395−407, https://doi.org/10.1080/02786820802104981.
Huffman, J. A., K. S. Docherty, C. Mohr, M. J. Cubison, I. M. Ulbrich, P. J. Ziemann, T. B. Onasch, and J. L. Jimenez, 2009a: Chemically-resolved volatility measurements of organic aerosol from different sources. Environ. Sci. Technol., 43, 5351−5357, https://doi.org/10.1021/es803539d.
Huffman, J. A., and Coauthors, 2009b: Chemically-resolved aerosol volatility measurements from two megacity field studies. Atmospheric Chemistry and Physics, 9, 7161−7182, https://doi.org/10.5194/acp-9-7161-2009.
Iinuma, Y., O. Böge, R. Gräfe, and H. Herrmann, 2010: Methyl-nitrocatechols: Atmospheric tracer compounds for biomass burning secondary organic aerosols. Environ. Sci. Technol., 44, 8453−8459, https://doi.org/10.1021/es102938a.
Iinuma, Y., M. Keywood, and H. Herrmann, 2016: Characterization of primary and secondary organic aerosols in Melbourne airshed: The influence of biogenic emissions, wood smoke and bushfires. Atmos. Environ., 130, 54−63, https://doi.org/10.1016/j.atmosenv.2015.12.014.
IPCC, 2013: Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, 1535 pp.
Jenkin, M. E., and K. C. Clemitshaw, 2000: Ozone and other secondary photochemical pollutants: Chemical processes governing their formation in the planetary boundary layer. Atmos. Environ., 34, 2499−2527, https://doi.org/10.1016/S1352-2310(99)00478-1.
Jimenez, J. L., and Coauthors, 2009: Evolution of organic aerosols in the atmosphere. Science, 326, 1525−1529, https://doi.org/10.1126/science.1180353.
Joo, T., J. C. Rivera-Rios, M. Takeuchi, M. J. Alvarado, and N. L. Ng, 2019: Secondary organic aerosol formation from reaction of 3-methylfuran with nitrate radicals. ACS Earth and Space Chemistry, 3, 922−934, https://doi.org/10.1021/acse-arthspacechem.9b00068.
Kolesar, K. R., Z. Y. Li, K. R. Wilson, and C. D. Cappa, 2015: Heating-induced evaporation of nine different secondary organic aerosol types. Environ. Sci. Technol., 49, 12242−12252, https://doi.org/10.1021/acs.est.5b03038.
Kuhn, T., M. Krudysz, Y. F. Zhu, P. M. Fine, W. C. Hinds, J. Froines, and C. Sioutas, 2005: Volatility of indoor and outdoor ultrafine particulate matter near a freeway. Journal of Aerosol Science, 36, 291−302, https://doi.org/10.1016/j.jaerosci.2004.09.006.
Lanz, V. A., M. R. Alfarra, U. Baltensperger, B. Buchmann, C. Hueglin, and A. S. H. Prévôt, 2007: Source apportionment of submicron organic aerosols at an urban site by factor analytical modelling of aerosol mass spectra. Atmospheric Chemistry and Physics, 7, 1503−1522, https://doi.org/10.5194/acp-7-1503-2007.
Lazaridis, M., 1999: Gas-particle partitioning of organic compounds in the atmosphere. Journal of Aerosol Science, 30, 1165−1170, https://doi.org/10.1016/S0021-8502(98)00788-5.
Lee, B. H., and Coauthors, 2016: Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets. Proceedings of the National Academy of Sciences of the United States of America, 113, 1516−1521, https://doi.org/10.1073/pnas.1508108113.
Li, H. Y., and Coauthors, 2017: Wintertime aerosol chemistry and haze evolution in an extremely polluted city of the North China Plain: Significant contribution from coal and biomass combustion. Atmospheric Chemistry and Physics, 17, 4751−4768, https://doi.org/10.5194/acp-17-4751-2017.
Liu, Q., Y. Sun, B. Hu, Z. R. Liu, S. Akio, and Y. S. Wang, 2012: In situ measurement of PM1 organic aerosol in Beijing winter using a high-resolution aerosol mass spectrometer. Chinese Science Bulletin, 57, 819−826, https://doi.org/10.1007/s11434-011-4886-0.
Matthew, B. M., A. M. Middlebrook, and T. B. Onasch, 2008: Collection efficiencies in an aerodyne aerosol mass spectrometer as a function of particle phase for laboratory generated aerosols. Aerosol Science and Technology, 42, 884−898, https://doi.org/10.1080/02786820802356797.
Middlebrook, A. M., R. Bahreini, J. L. Jimenez, and M. R. Canagaratna, 2012: Evaluation of composition-dependent collection efficiencies for the aerodyne aerosol mass spectrometer using field data. Aerosol Science and Technology, 46, 258−271, https://doi.org/10.1080/02786826.2011.620041.
Mohr, C., and Coauthors, 2012: Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data. Atmospheric Chemistry and Physics, 12, 1649−1665, https://doi.org/10.5194/acp-12-1649-2012.
Mohr, C., and Coauthors, 2013: Contribution of nitrated phenols to wood burning brown carbon light absorption in Detling, United kingdom during winter time. Environ. Sci. Technol., 47, 6316−6324, https://doi.org/10.1021/es400683v.
Ng, N. L., and Coauthors, 2010: Organic aerosol components observed in northern hemispheric datasets from aerosol mass spectrometry. Atmospheric Chemistry and Physics, 10, 4625−4641, https://doi.org/10.5194/acp-10-4625-2010.
Ng, N. L., and Coauthors, 2017: Nitrate radicals and biogenic volatile organic compounds: Oxidation, mechanisms, and organic aerosol. Atmospheric Chemistry and Physics, 17, 2103−2162, https://doi.org/10.5194/acp-17-2103-2017.
Nie, W., and Coauthors, 2017: Volatility of mixed atmospheric humic-like substances and ammonium sulfate particles. Atmospheric Chemistry and Physics, 17, 3659−3672, https://doi.org/10.5194/acp-17-3659-2017.
Paatero, P., and U. Tapper, 1994: Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5, 111−126, https://doi.org/10.1002/env.3170050203.
Pankow, J. F., and K. C. Barsanti, 2009: The carbon number-polarity grid: A means to manage the complexity of the mix of organic compounds when modeling atmospheric organic particulate matter. Atmos. Environ., 43, 2829−2835, https://doi.org/10.1016/j.atmosenv.2008.12.050.
Perring, A. E., S. E. Pusede, and R. C. Cohen, 2013: An observational perspective on the atmospheric impacts of alkyl and multifunctional nitrates on ozone and secondary organic aerosol. Chemical Reviews, 113, 5848−5870, https://doi.org/10.1021/cr300520x.
Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001: Aerosols, climate, and the hydrological cycle. Science, 294, 2119−2124, https://doi.org/10.1126/science.1064034.
Rollins, A. W., and Coauthors, 2012: Evidence for NOx control over nighttime SOA formation. Science, 337, 1210−1212, https://doi.org/10.1126/science.1221520.
Russo, R. S., Y. Zhou, K. B. Haase, O. W. Wingenter, E. K. Frinak, H. Mao, R. W. Talbot, and B. C. Sive, 2010: Temporal variability, sources, and sinks of C1-C5 alkyl nitrates in coastal New England. Atmospheric Chemistry and Physics, 10, 1865−1883, https://doi.org/10.5194/acp-10-1865-2010.
Saha, P. K., and A. P. Grieshop, 2016: Exploring divergent volatility properties from yield and thermodenuder measurements of secondary organic aerosol from α-pinene ozonolysis. Environ. Sci. Technol., 50, 5740−5749, https://doi.org/10.1021/acs.est.6b00303.
Saleh, R., J. Walker, and A. Khlystov, 2008: Determination of saturation pressure and enthalpy of vaporization of semi-volatile aerosols: The integrated volume method. Journal of Aerosol Science, 39, 876−887, https://doi.org/10.1016/j.jaerosci.2008.06.004.
Sandradewi, J., A. S. H. Prévôt, S. Szidat, N. Perron, M. R. Alfarra, V. A. Lanz, E. Weingartner, and U. Baltensperger, 2008: Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter. Environ. Sci. Technol., 42, 3316−3323, https://doi.org/10.1021/es702253m.
Sato, K., A. Takami, T. Isozaki, T. Hikida, A. Shimono, and T. Imamura, 2010: Mass spectrometric study of secondary organic aerosol formed from the photo-oxidation of aromatic hydrocarbons. Atmos. Environ., 44, 1080−1087, https://doi.org/10.1016/j.atmosenv.2009.12.013.
Schneider, J., and Coauthors, 2006: Mass spectrometric analysis and aerodynamic properties of various types of combustion-related aerosol particles. International Journal of Mass Spectrometry, 258, 37−49, https://doi.org/10.1016/j.ijms.2006.07.008.
Shrivastava, M. K., E. M. Lipsky, C. O. Stanier, and A. L. Robinson, 2006: Modeling semivolatile organic aerosol mass emissions from combustion systems. Environ. Sci. Technol., 40, 2671−2677, https://doi.org/10.1021/es0522231.
Song, Y., Y. H. Zhang, S. D. Xie, L. M. Zeng, M. Zheng, L. G. Salmon, M. Shao, and S. Slanina, 2006: Source apportionment of PM2.5 in Beijing by positive matrix factorization. Atmos. Environ., 40, 1526−1537, https://doi.org/10.1016/j.atmosenv.2005.10.039.
Sun, Y. L., Z. F. Wang, H. B. Dong, T. Yang, J. Li, X. L. Pan, P. Chen, and J. T. Jayne, 2012: Characterization of summer organic and inorganic aerosols in Beijing, China with an Aerosol Chemical Speciation Monitor. Atmos. Environ., 51, 250−259, https://doi.org/10.1016/j.atmosenv.2012.01.013.
Teng, A. P., J. D. Crounse, L. Lee, J. M. St. Clair, R. C. Cohen, and P. O. Wennberg, 2015: Hydroxy nitrate production in the OH-initiated oxidation of alkenes. Atmospheric Chemistry and Physics, 15, 4297−4316, https://doi.org/10.5194/acp-15-4297-2015.
Teng, A. P., J. D. Crounse, and P. O. Wennberg, 2017: Isoprene peroxy radical dynamics. Journal of the American Chemical Society, 139, 5367−5377, https://doi.org/10.1021/jacs.6b12838.
Ulbrich, I. M., M. R. Canagaratna, Q. Zhang, D. R. Worsnop, and J. L. Jimenez, 2009: Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data. Atmospheric Chemistry and Physics, 9, 2891−2918, https://doi.org/10.5194/acp-9-2891-2009.
Wang, L. T., Z. Wei, J. Yang, Y. Zhang, F. F. Zhang, J. Su, C. C. Meng, and Q. Zhang, 2014: The 2013 severe haze over southern Hebei, China: Model evaluation, source apportionment, and policy implications. Atmospheric Chemistry and Physics, 14, 3151−3173, https://doi.org/10.5194/acp-14-3151-2014.
Xu, L., S. Suresh, H. Guo, R. J. Weber, and N. L. Ng, 2015a: Aerosol characterization over the southeastern United States using high-resolution aerosol mass spectrometry: Spatial and seasonal variation of aerosol composition and sources with a focus on organic nitrates. Atmospheric Chemistry and Physics, 15, 7307−7336, https://doi.org/10.5194/acp-15-7307-2015.
Xu, L., and Coauthors, 2015b: Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States. Proceedings of the National Academy of Sciences of the United States of America, 112, 37−42, https://doi.org/10.1073/pnas.1417609112.
Xu, W. Q., and Coauthors, 2017: Seasonal characterization of organic nitrogen in atmospheric aerosols using high resolution aerosol mass spectrometry in Beijing, China. ACS Earth and Space Chemistry, 1, 673−682, https://doi.org/10.1021/acsearthspacechem.7b00106.
Xu, W. Q., and Coauthors, 2019: Summertime aerosol volatility measurements in Beijing, China. Atmospheric Chemistry and Physics, 19, 10205−10216, https://doi.org/10.5194/acp-19-10205-2019.
Yu, K. Y., Q. Zhu, K. Du, and X.-F. Huang, 2019: Characterization of nighttime formation of particulate organic nitrates based on high-resolution aerosol mass spectrometry in an urban atmosphere in China. Atmospheric Chemistry and Physics, 19, 5235−5249, https://doi.org/10.5194/acp-19-5235-2019.
Zhang, Q., J. L. Jimenez, M. R. Canagaratna, I. M. Ulbrich, N. L. Ng, D. R. Worsnop, and Y. L. Sun, 2011: Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: A review. Analytical and Bioanalytical Chemistry, 401, 3045−3067, https://doi.org/10.1007/s00216-011-5355-y.
Zhang, Y. J., and Coauthors., 2015: Insights into characteristics, sources, and evolution of submicron aerosols during harvest seasons in the Yangtze River delta region, China. Atmospheric Chemistry and Physics, 15, 1331−1349, https://doi.org/10.5194/acp-15-1331-2015.
Zhou, S., and Coauthors, 2017: Regional influence of wildfires on aerosol chemistry in the western US and insights into atmospheric aging of biomass burning organic aerosol. Atmospheric Chemistry and Physics, 17, 2477−2493, https://doi.org/10.5194/acp-17-2477-2017.