Alley, R. B., K. A. Emanuel, and F. Q. Zhang, 2019: Advances in weather prediction. Science, 363(6425), 342−344, https://doi.org/10.1126/science.aav7274.
Barker, D. M., W. Huang, Y.-R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897−914, https://doi.org/10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.
Cha, D.-H., and Y. Q. Wang, 2013: A dynamical initialization scheme for real-time forecasts of tropical cyclones using the WRF model. Mon. Wea. Rev., 141, 964−986, https://doi.org/10.1175/MWR-D-12-00077.1.
Chen, X. C., and F. Q. Zhang, 2019: Development of a convection-permitting air-sea-coupled ensemble data assimilation system for tropical cyclone prediction. Journal of Advances in Modeling Earth Systems, 11, 3474−3496, https://doi.org/10.1029/2019MS001795.
Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. Journal of Quantitative Spectroscopy and Radiative Transfer, 91(2), 233−244, https://doi.org/10.1016/j.jqsrt.2004.05.058.
Courtier, P., J.-N. Thepaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 1367−1387, https://doi.org/10.1002/qj.49712051912.
Davis, C., and Coauthors, 2008: Prediction of landfalling hurricanes with the Advanced Hurricane WRF model. Mon. Wea. Rev., 136, 1990−2005, https://doi.org/10.1175/2007MWR2085.1.
Davis, C., and Coauthors, 2011: High-resolution hurricane forecasts. Computing in Science & Engineering, 13, 22−30, https://doi.org/10.1109/MCSE.2010.74.
Dee, D. P., and Coauthors, 2011: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137(656), 553−597, https://doi.org/10.1002/qj.828.
Donlon, C. J., M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler, and W. Wimmer, 2012: The operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sensing of Environment, 116, 140−158, https://doi.org/10.1016/j.rse.2010.10.017.
Doyle, J. D., and Coauthors, 2014: Tropical cyclone prediction using COAMPS-TC. Oceanography, 27(3), 104−115, https://doi.org/10.5670/oceanog.2014.72.
Emanuel, K., 2018: 100 years of progress in tropical cyclone research. Meteor. Monogr., 59, 15.1−15.68, https://doi.org/10.1175/amsmonographs-d-18-0016.1.
Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43(6), 585−605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.
Emanuel, K. A., 1995a: On thermally direct circulations in moist atmospheres. J. Atmos. Sci., 52, 1529−1534, https://doi.org/10.1175/1520-0469(1995)052<1529:OTDCIM>2.0.CO;2.
Emanuel, K. A., 1995b: The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. J. Atmos. Sci., 52, 3960−3968, https://doi.org/10.1175/1520-0469(1995)052<3960:TBOASH>2.0.CO;2.
Fudeyasu, H., Y. Q. Wang, M. Satoh, T. Nasuno, H. Miura, and W. Yanase, 2010a: Multiscale interactions in the life cycle of a tropical cyclone simulated in a global cloud-system-resolving model. Part II: System-scale and mesoscale processes. Mon. Wea. Rev., 138, 4305−4327, https://doi.org/10.1175/2010MWR3475.1.
Fudeyasu, H., Y. Q. Wang, M. Satoh, T. Nasuno, H. Miura, and W. Yanase, 2010b: Multiscale interactions in the life cycle of a tropical cyclone simulated in a global cloud-system-resolving model. Part I: Large-scale and storm-scale evolutions. Mon. Wea. Rev., 138, 4285−4304, https://doi.org/10.1175/2010MWR3474.1.
Gopalakrishnan, S. G., S. Goldenberg, T. Quirino, X. J. Zhang, F. Marks Jr., K.-S. Yeh, R. Atlas, and V. Tallapragada, 2012: Toward improving high-resolution numerical hurricane forecasting: Influence of model horizontal grid resolution, initialization, and physics. Wea. Forecasting, 27, 647−666, https://doi.org/10.1175/WAF-D-11-00055.1.
Gula, J., and W. R. Peltier, 2012: Dynamical downscaling over the great lakes basin of north america using the WRF regional climate model: The impact of the great lakes system on regional greenhouse warming. J. Climate, 25, 7723−7742, https://doi.org/10.1175/JCLI-D-11-00388.1.
Halliwell, G. R., Jr., L. K. Shay, S. D. Jacob, O. M. Smedstad, and E. W. Uhlhorn, 2008: Improving ocean model initialization for coupled tropical cyclone forecast models using GODAE Nowcasts. Mon. Wea. Rev., 136, 2576−2591, https://doi.org/10.1175/2007MWR2154.1.
Hong, S. Y., J. Dudhia, and S. H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103−120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.
Hostetler, S. W., J. R. Alder, and A. M. Allan, 2011: Dynamically downscaled climate simulations over North America: Methods, evaluation, and supporting documentation for users. U.S. Geological Survey Open-File Report 2011−1238, 64 pp.
Hu, X. M., P. M. Klein, and M. Xue, 2013: Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments. J. Geophys. Res., 118, 10 490−10 505, https://doi.org/10.1002/jgrd.50823.
Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The kain-fritsch scheme. The Representation of Cumulus Convection in Numerical Models, K. A. Emanuel and D. J. Raymond, Eds., American Meteorological Society, 165−170, https://doi.org/10.1007/978-1-935704-13-3_16.
Kim, O.-Y., B. Wang, and S.-H. Shin, 2013: How do weather characteristics change in a warming climate? Climate Dyn., 41, 3261−3281, https://doi.org/10.1007/s00382-013-1795-8.
Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The international best track archive for climate stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteo. Soc., 91, 363−376, https://doi.org/10.1175/2009BAMS2755.1.
Komurcu, M., K. A. Emanuel, M. Huber, and R. P. Acosta, 2018: High-resolution climate projections for the northeastern united states using dynamical downscaling at convection-permitting scales. Earth and Space Science, 5, 801−826, https://doi.org/10.1029/2018EA000426.
Kruk, M. C., K. R. Knapp, and D. H. Levinson, 2010: A technique for combining global tropical cyclone best track data. J. Atmos. Oceanic Technol., 27, 680−692, https://doi.org/10.1175/2009JTECHA1267.1.
Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 2030−2045, https://doi.org/10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2.
Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL hurricane prediction system. Mon. Wea. Rev., 123, 2791−2801, https://doi.org/10.1175/1520-0493(1995)123<2791:IITGHP>2.0.CO;2.
Laloyaux, P., and Coauthors, 2018: CERA-20C: A coupled reanalysis of the twentieth century. Journal of Advances in Modeling Earth Systems, 10, 1172−1195, https://doi.org/10.1029/2018MS001273.
Large, W. G., J. C. Mcwilliams, and S. C. Doney, 1994: Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32(4), 363−403, https://doi.org/10.1029/94RG01872.
Li, Y., and R. Toumi, 2018: Improved tropical cyclone intensity forecasts by assimilating coastal surface currents in an idealized study. Geophys. Res. Lett., 45, 10 019−10 026, https://doi.org/10.1029/2018GL079677.
Rockel, B., C. L. Castro, R. A. Pielke, H. von Storch, and G. Leoncini, 2008: Dynamical downscaling: Assessment of model system dependent retained and added variability for two different regional climate models. J. Geophys. Res., 113, D21107, https://doi.org/10.1029/2007JD009461.
Saha, S., and Coauthors, 2010: The ncep climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91, 1015−1058, https://doi.org/10.1175/2010BAMS3001.1.
Saha, S., and Coauthors, 2014: The NCEP climate forecast system version 2. J. Climate, 27, 2185−2208, https://doi.org/10.1175/JCLI-D-12-00823.1.
Sandery, P. A., G. B. Brassington, A. Craig, and T. Pugh, 2010: Impacts of ocean−atmosphere coupling on tropical cyclone intensity change and ocean prediction in the australian region. Mon. Wea. Rev., 138, 2074−2091, https://doi.org/10.1175/2010MWR3101.1.
Shchepetkin, A. F., and J. C. McWilliams, 2005: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9, 347−404, https://doi.org/10.1016/j.ocemod.2004.08.002.
Sippel, J. A., 2008: The Dynamics and Predictability of Tropical Cyclones. Doctoral Dissertation, Texas A&M University. [Available online from http://hdl.handle.net/1969.1/ETD-TAMU-2008-12-141]
Sippel, J. A., and F. Q. Zhang, 2008: A probabilistic analysis of the dynamics and predictability of tropical cyclogenesis. J. Atmos. Sci., 65, 3440−3459, https://doi.org/10.1175/2008JAS2597.1.
Sugiura, N., T. Awaji, S. Masuda, T. Mochizuki, T. Toyoda, T. Miyama, H. Igarashi, and Y. Ishikawa, 2008: Development of a four-dimensional variational coupled data assimilation system for enhanced analysis and prediction of seasonal to interannual climate variations. J. Geophys. Res., 113, C10017, https://doi.org/10.1029/2008JC004741.
Vitart, F., J. L. Anderson, and W. F. Stern, 1997: Simulation of interannual variability of tropical storm frequency in an ensemble of GCM integrations. J. Climate, 10, 745−760, https://doi.org/10.1175/1520-0442(1997)010<0745:SOIVOT>2.0.CO;2.
Walsh, K. J. E., M. Fiorino, C. W. Landsea, and K. L. McInnes, 2007: Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Climate, 20, 2307−2314, https://doi.org/10.1175/JCLI4074.1.
Wang, B., and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975−1985. Meteorol. Atmos. Phys., 44(1−4), 43−61, https://doi.org/10.1007/BF01026810.
Warner, J. C., B. Armstrong, R. Y. He, and J. B. Zambon, 2010: Development of a coupled ocean−atmosphere−wave−sediment transport (COAWST) modeling system. Ocean Modelling, 35(3), 230−244, https://doi.org/10.1016/j.ocemod.2010.07.010.
Wu, X. R., W. Li, G. J. Han, S. Q. Zhang, and X. D. Wang, 2014: A compensatory approach of the fixed localization in EnKF. Mon. Wea. Rev., 142, 3713−3733, https://doi.org/10.1175/MWR-D-13-00369.1.
Xue, M., J. Schleif, F. Y. Kong, K. W. Thomas, Y. H. Wang, and K. F. Zhu, 2013: Track and intensity forecasting of hurricanes: Impact of convection-permitting resolution and global ensemble Kalman filter analysis on 2010 Atlantic season forecasts. Wea. Forecasting, 28, 1366−1384, https://doi.org/10.1175/WAF-D-12-00063.1.
Zhang, F. Q., Y. H. Weng, J. F. Gamache, and F. D. Marks, 2011: Performance of convection-permitting hurricane initialization and prediction during 2008−2010 with ensemble data assimilation of inner-core airborne Doppler radar observations. Geophys. Res. Lett., 38(15), L15810, https://doi.org/10.1029/2011GL048469.
Zhang, S., M. J. Harrison, A. Rosati, and A. Wittenberg, 2007: System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon. Wea. Rev., 135(12), 3541−3564, https://doi.org/10.1175/MWR3466.1.
Zhang, S., M. Zhao, S. J. Lin, X. Yang, and W. Anderson, 2014: Retrieval of tropical cyclone statistics with a high-resolution coupled model and data. Geophys. Res. Lett., 41, 652−660, https://doi.org/10.1002/2013GL058879.
Zhang, S., and Coauthors, 2015: Impact of having realistic tropical cyclone frequency on ocean heat content and transport forecasts in a high-resolution coupled model. Geophys. Res. Lett., 42, 5966−5973, https://doi.org/10.1002/2015GL064745.
Zhao, M., I. M. Held, S.J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 6653−6678, https://doi.org/10.1175/2009JCLI3049.1.