Bao, L., T. Gneiting, E. P. Grimit, P. Guttorp, and A. E. Raftery, 2010: Bias correction and Bayesian model averaging for ensemble forecasts of surface wind direction. Mon. Wea. Rev., 138, 1811−1821, https://doi.org/10.1175/2009MWR3138.1.
Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 47−55, https://doi.org/10.1038/nature14956.
Boukabara, S. A., V. Krasnopolsky, J. Q. Stewart, E. S. Maddy, N. Shahroudi, and R. N. Hoffman, 2019: Leveraging modern artificial intelligence for remote sensing and NWP: Benefits and challenges. Bull. Amer. Meteor. Soc., 100, ES473−ES491, https://doi.org/10.1175/BAMS-D-18-0324.1.
Chang, J., X. D. Peng, G. Z. Fan, and Y. Z. Che, 2015: Error correction of numerical weather prediction with historical data. Acta Meteorologica Sinica, 73, 341−354, https://doi.org/10.11676/qxxb2015.021. (in Chinese with English abstract
Chen, H. N., V. Chandrasekar, H. M. Tan, and R. Cifelli, 2019: Rainfall estimation from ground radar and TRMM Precipitation Radar using hybrid deep neural networks. Geophys. Res. Lett., 46, 10669−10678, https://doi.org/10.1029/2019GL084771.
Cho, D., C. Yoo, J. Im, and D. H. Cha, 2020: Comparative assessment of various machine learning-based bias correction methods for numerical weather prediction model forecasts of extreme air temperatures in urban areas. Earth and Space Science, 7, e2019EA000740, https://doi.org/10.1029/2019EA000740.
Glahn, H. R., and D. A. Lowry, 1972: The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteorol. Climatol., 11, 1203−1211, https://doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2.
Guo, H. Y., M. X. Chen, and L. Han. 2020: Evaluation of the ConvGRU deep learning method for convective weather nowcasting. Proc. 19th Conf. on Artificial Intelligence for Environ-mental Science, Boston, MA, Amer. Meteor. Soc.
Han, L., J. Z. Sun, and W. Zhang, 2020: Convolutional neural network for convective storm nowcasting using 3-D Doppler weather radar data. IEEE Trans. Geosci. Remote Sens., 58, 1487−1495, https://doi.org/10.1109/TGRS.2019.2948070.
He, D. X., Z. M. Zhou, Z. P. Kang, and L. Liu, 2019: Numerical studies on forecast error correction of GRAPES model with variational approach. Advances in Meteorology, 2019, 2856289, https://doi.org/10.1155/2019/2856289.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049, https://doi.org/10.1002/qj.3803.
Homleid, M., 1995: Diurnal corrections of short-term surface temperature Forecasts Using the Kalman Filter. Wea. Forecasting, 10, 689−707, https://doi.org/10.1175/1520-0434(1995)010<0689:DCOSTS>2.0.CO;2.
Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796−811, https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.
Hu, S. J., C. Y. Qiu, L. Y. Zhang, Q. C. Huang, H. P. Yu, and J. F. Chou, 2014: An approach to estimating and extrapolating model error based on inverse problem methods: Towards accurate numerical weather prediction. Chinese Physics B, 23, 089201, https://doi.org/10.1088/1674-1056/23/8/089201.
Kingma, D. P., and J. Ba, 2015: Adam: A Method for Stochastic Optimization. Proc. 3rd International Conf. on Learning Representations, San Diego, ICLR.
Klein, W. H., B. M. Lewis, and I. Enger, 1959: Objective prediction of five-day mean temperatures during winter. J. Atmos. Sci., 16, 672−682, https://doi.org/10.1175/1520-0469(1959)016<0672:OPOFDM>2.0.CO;2.
Lagerquist, R., A. McGovern, and D. J. Gagne II, 2019: Deep learning for spatially explicit prediction of synoptic-scale Fronts. Wea. Forecasting, 34, 1137−1160, https://doi.org/10.1175/WAF-D-18-0183.1.
Lebedev, V., and Coauthors, 2019: Precipitation nowcasting with satellite imagery. Proc. 25th ACM SIGKDD Int. Conf. on Knowledge Discovery & Data Mining, Anchorage, AK, ACM, 2680−2688, https://doi.org/10.1145/3292500.3330762.
Marzban, C., 2003: Neural networks for postprocessing model output: ARPS. Mon. Wea. Rev., 131, 1103−1111, https://doi.org/10.1175/1520-0493(2003)131<1103:NNFPMO>2.0.CO;2.
Marzban, C., S. Sandgathe, and E. Kalnay, 2006: MOS, perfect prog, and reanalysis. Mon. Wea. Rev., 134, 657−663, https://doi.org/10.1175/MWR3088.1.
Nair, V., and Hinton, G. E., 2010: Rectified linear units improve restricted Boltzmann machines. Proc. 27th Int. Conf. on Machine Learning, Haifa, Israel, ICML, 807.
Peng, X. D., Y. Z. Che, and J. Chang, 2013: A novel approach to improve numerical weather prediction skills by using anomaly integration and historical data. J. Geophys. Res., 118, 8814−8826, https://doi.org/10.1002/jgrd.50682.
Qian, W. H., 2012: How to improve the skills of weather and climate predictions? Chinese Journal of Geophysics, 55, 1532−1540, https://doi.org/10.6038/j.issn.0001-5733.2012.05.010. (in Chinese with English abstract
Rasp, S., and S. Lerch, 2018: Neural networks for postprocessing ensemble weather forecasts. Mon. Wea. Rev., 146, 3885−3900, https://doi.org/10.1175/MWR-D-18-0187.1.
Ronneberger, O., P. Fischer, and T. Brox, 2015: U-net: Convolutional networks for biomedical image segmentation. Proc. 18th Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, Springer, https://doi.org/10.1007/978-3-319-24574-4_28.
Shi, W. Z., J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. H. Wang, 2016: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. Proc. 2016 IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, NV, IEEE, https://doi.org/10.1109/CVPR.2016.207.
Shi, X. J., Z. R. Chen, H. Wang, D. Y. Yeung, W. K. Wong, and W. C. Woo, 2015: Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Proc. 28th Int. Conf. on Neural Information Processing Systems, Montreal, Quebec, NIPS, 802−810, https://dl.acm.org/doi/10.5555/2969239.2969329.
Shi, X. J., Z. H. Gao, L. Lausen, H. Wang, D. Y. Yeung, W. K. Wong, and W. C. Woo, 2017: Deep learning for precipitation nowcasting: A benchmark and a new model. Proc. 31st Int. Conf. on Neural Information Processing Systems, Long Beach, CA, NIPS, 5622−5632, https://dl.acm.org/doi/10.5555/3295222.3295313.
Steinacker, R., and Coauthors, 2006: A mesoscale data analysis and downscaling method over complex terrain. Mon. Wea. Rev., 134, 2758−2771, https://doi.org/10.1175/MWR3196.1.
Tao, Y. M., X. G. Gao, K. Hsu, S. Sorooshian, and A. Ihler, 2016: A deep neural network modeling framework to reduce bias in satellite precipitation products. Journal of Hydrometeorology, 17, 931−945, https://doi.org/10.1175/JHM-D-15-0075.1.
Vannitsem, S., and Coauthors, 2020: Statistical postprocessing for weather forecasts—Review, challenges and avenues in a big data world. arXiv: 2004.06582v1.
Vashani, S., M. Azadi, and S. Hajjam, 2010: Comparative evaluation of different post processing methods for numerical prediction of temperature forecasts over Iran. Research Journal of Environmental Sciences, 4, 305−316, https://doi.org/10.3923/rjes.2010.305.316.
Vislocky, R. L., and G. S. Young, 1989: The use of perfect prog forecasts to improve model output statistics forecasts of precipitation probability. Wea. Forecasting, 4, 202−209, https://doi.org/10.1175/1520-0434(1989)004<0202:TUOPPF>2.0.CO;2.
Xia, J. J., and Coauthors, 2020: Machine learning-based weather support for the 2022 Winter Olympics. Adv. Atmos. Sci., 37, 927−932, https://doi.org/10.1007/s00376-020-0043-5.
Xue, H. L., X. S. Shen, and J. F. Chou, 2015: An online model correction method based on an inverse problem: Part I—model error estimation by Iteration. Adv. Atmos. Sci., 2, 1329−1340, https://doi.org/10.1007/s00376-015-4261-1.
Zeiler, M. D., and R. Fergus, 2014: Visualizing and understanding convolutional networks. Proc. 13th European Conf. on Computer Vision, Zurich, Switzerland, Springer, 818−833, https://doi.org/10.1007/978-3-319-10590-1_53.