Bjordal, J., T. Storelvmo, K. Alterskjær, and T. Carlsen, 2020: Equilibrium climate sensitivity above 5°C plausible due to state-dependent cloud feedback. Nature Geoscience, 13(11), 718−721, https://doi.org/10.1038/s41561-020-00649-1.
Bodas-Salcedo, A., and Coauthors, 2014: Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models. J. Climate, 27, 41−56, https://doi.org/10.1175/JCLI-D-13-00169.1.
Bony, S., and Coauthors, 2015: Clouds, circulation and climate sensitivity. Nature Geoscience, 8, 261−268, https://doi.org/10.1038/ngeo2398.
Ceppi, P., Y.-T. Hwang, D. M. W. Frierson, and D. L. Hartmann, 2012: Southern Hemisphere jet latitude biases in CMIP5 models linked to shortwave cloud forcing. Geophys. Res. Lett., 39, L19708, https://doi.org/10.1029/2012GL053115.
Dolinar, E. K., X. Q. Dong, B. K. Xi, J. H. Jiang, and H. Su, 2015: Evaluation of CMIP5 simulated clouds and TOA radiation budgets using NASA satellite observations. Climate Dyn., 44, 2229−2247, https://doi.org/10.1007/s00382-014-2158-9.
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937−1958, https://doi.org/10.5194/gmd-9-1937-2016.
Gates, W. L., and Coauthors, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80, 29−56, https://doi.org/10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2.
Haynes, J. M., C. Jakob, W. B. Rossow, G. Tselioudis, and J. Brown, 2011: Major characteristics of Southern Ocean cloud regimes and their effects on the energy budget. J. Climate, 24, 5061−5080, https://doi.org/10.1175/2011JCLI4052.1.
Hwang, Y. T., and D. M. W. Frierson, 2013: Link between the double-Intertropical Convergence Zone problem and cloud biases over the Southern Ocean. Proceedings of the National Academy of Sciences of the United States of America, 110(13), 4935−4940, https://doi.org/10.1073/pnas.1213302110.
IPCC, 2014a: Clouds and aerosols. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, 571−657,
IPCC, 2014b: Evaluation of climate models. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, 741−882,
Jian, B. D., J. M. Li, G. Y. Wang, Y. X. Zhao, Y. R. Li, J. Wang, M. Zhang, and J. P. Huang, 2021: Evaluation of the CMIP6 marine subtropical stratocumulus cloud albedo and its controlling factors. Atmospheric Chemistry and Physics, 21, 9809−9828, https://doi.org/10.5194/acp-21-9809-2021.
Jiang, J, H. Su, L. T. Wu, C. X. Zhai, and K. A. Schiro, 2021: Improvements in cloud and water vapor simulations over the tropical oceans in CMIP6 compared to CMIP5,. Earth and Space Science, 8(5), e2020EA001520, https://doi.org/10.1029/2020ea001520.
Kang, L. T., R. Marchand, and W. Smith, 2021: Evaluation of MODIS and Himawari-8 low clouds retrievals over the Southern Ocean with in situ measurements from the SOCRATES campaign. Earth and Space Science, 8, e2020EA001397, https://doi.org/10.1029/2020EA001397.
Kato, S., and Coauthors, 2018: Surface irradiances of edition 4.0 Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product. J. Climate, 31, 4501−4527, https://doi.org/10.1175/JCLI-D-17-0523.1.
Loeb, N. G., and Coauthors, 2018a: Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) edition-4.0 data product. J. Climate, 31, 895−918, https://doi.org/10.1175/JCLI-D-17-0208.1.
Loeb, N. G., and Coauthors, 2018b: Impact of ice cloud microphysics on satellite cloud retrievals and broadband flux radiative transfer model calculations. J. Climate, 31(5), 1851−1864, https://doi.org/10.1175/JCLI-D-17-0426.1.
Luo, N., Y. Guo, J. M. Chou, and Z. B. Gao, 2022: Added value of CMIP6 models over CMIP5 models in simulating the climatological precipitation extremes in China. International Journal of Climatology, 42, 1148−1164, https://doi.org/10.1002/joc.7294.
Marchand, R., and Coauthors, 2014: The Southern Ocean Clouds, Radiation Aerosol Transport Experimental Study (SOCRATES). Available from http://www.atmos.washington.edu/socrates/SOCRATES_white_paper_Final_Sep29_2014.pdf.
Mauritsen, T., and Coauthors, 2019: Developments in the MPI-M Earth System Model Version 1.2 (MPI-ESM1.2) and its response to increasing CO2. Journal of Advances in Modeling Earth Systems, 11, 998−1038, https://doi.org/10.1029/2018MS001400.
McCoy, I. L., and Coauthors, 2020: The hemispheric contrast in cloud microphysical properties constrains aerosol forcing. Proceedings of the National Academy of Sciences of the United States of America, 117(32), 18 998−19 006,
Pan, B. W., Y. Wang, T. Logan, J.-S. Hsieh, J. H. Jiang, Y. X. Li, and R. Y. Zhang, 2020: Determinant role of aerosols from industrial sources in Hurricane Harvey's catastrophe. Geophys. Res. Lett., 47, e2020GL090014, https://doi.org/10.1029/2020GL090014.
Ramanathan, V, R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth radiation budget experiment. Science, 243(4887), 57−63, https://doi.org/10.1126/science.243.4887.57.
Schiro, K. A., H. Su, Y. Wang, B. Langenbrunner, J. H. Jiang, and J. D. Neelin, 2019: Relationships between tropical ascent and high cloud fraction changes with warming revealed by perturbation physics experiments in CAM5. Geophys. Res. Lett., 46(16), 10 112−10 121,
Schneider, S. H., 1972: Cloudiness as a global climatic feedback mechanism: The effects on the radiation balance and surface temperature of variations in cloudiness. J. Atmos. Sci., 29, 1413−1422, https://doi.org/10.1175/1520-0469(1972)029<1413:CAAGCF>2.0.CO;2.
Shea, Y. L., B. A. Wielicki, S. Sun-Mack, and P. Minnis, 2017: Quantifying the dependence of satellite cloud retrievals on instrument uncertainty. J. Climate, 30(17), 6959−6976, https://doi.org/10.1175/JCLI-D-16-0429.1.
Slingo, A., 1990: Sensitivity of the Earth's radiation budget to changes in low clouds. Nature, 343, 49−51, https://doi.org/10.1038/343049a0.
Stanfield, R. E., X. Q. Dong, B. K. Xi, A. D. Del Genio, P. Minnis, D. Doelling, and N. Loeb, 2015: Assessment of NASA GISS CMIP5 and Post-CMIP5 simulated clouds and TOA radiation budgets using satellite observations. Part II: TOA radiation budget and CREs. J. Climate, 28(5), 1842−1864, https://doi.org/10.1175/JCLI-D-14-00249.1.
Tan, I., T. Storelvmo, and M. D. Zelinka, 2016: Observational constraints on mixed-phase clouds imply higher climate sensitivity. Science, 352(6282), 224−227, https://doi.org/10.1126/science.aad5300.
Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106(D7), 7183−7192, https://doi.org/10.1029/2000JD900719.
Teng, S. W., C. Liu, Z. B. Zhang, Y. Wang, B. Sohn, Y. L. Yung, 2020: Retrieval of Ice-over-water cloud microphysical and optical properties using passive radiometers. Geophys. Res. Lett., 47(16), e2020GL088941, https://doi.org/10.1029/2020GL088941.
Trenberth, K. E., and J. T. Fasullo, 2010: Simulation of present-day and twenty-first-century energy budgets of the southern oceans. J. Climate, 23, 440−454, https://doi.org/10.1175/2009JCLI3152.1.
Wang, Y., R. Y. Zhang, and R. Saravanan, 2014: Asian pollution climatically modulates mid-latitude cyclones following hierarchical modelling and observational analysis. Nature Communications, 5, 3098, https://doi.org/10.1038/ncomms4098.
Wang, Y., H. Su, J. H. Jiang, F. Xu, and Y. L. Yung, 2020: Impact of cloud ice particle size uncertainty in a climate model and implications for future satellite missions. J. Geophys. Res., 125, e2019JD032119, https://doi.org/10.1029/2019JD032119.
Weatherhead, E. C., and Coauthors, 1998: Factors affecting the detection of trends: Statistical considerations and applications to environmental data. J. Geophys. Res., 103, 17 149−17 161,
Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012: Computing and partitioning cloud feedbacks using cloud property histograms. Part II: Attribution to changes in cloud amount, altitude, and optical depth. J. Climate, 25, 3736−3754, https://doi.org/10.1175/JCLI-D-11-00249.1.
Zelinka, M. D., and Coauthors, 2020: Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782.
Zhao, C. F., and T. J. Garrett, 2015: Effects of Arctic haze on surface cloud radiative forcing. Geophys. Res. Lett., 42, 557−564, https://doi.org/10.1002/2014GL062015.
Zhao, L. J., C. F. Zhao, Y. Wang, Y. Wang, and Y. K. Yang, 2020: Evaluation of cloud microphysical properties derived from MODIS and Himawari-8 using in situ aircraft measurements over the Southern Ocean. Earth and Space Science, 7, e2020EA001137, https://doi.org/10.1029/2020EA001137.
Zhu, H. H., Z. H. Jiang, J. Li, W. Li, C. X. Sun, and L. Li, 2020: Does CMIP6 inspire more confidence in simulating climate extremes over China. Adv. Atmos. Sci., 37(10), 1119−1132, https://doi.org/10.1007/s00376-020-9289-1.