Barton, E. J., C. M. Taylor, C. Klein, P. P. Harris, and X. Meng, 2021: Observed soil moisture impact on strong convection over mountainous Tibetan Plateau. Journal of Hydrometeorology, 22, 561−572, https://doi.org/10.1175/JHM-D-20-0129.1.
Chow, K. C., J. C. L. Chan, X. L. Shi, Y. M. Liu, and Y. H. Ding, 2008: Time-lagged effects of spring Tibetan Plateau soil moisture on the monsoon over China in early summer. International Journal of Climatology, 28, 55−67, https://doi.org/10.1002/joc.1511.
Christopoulos, C., and T. Schneider, 2021: Assessing biases and climate implications of the diurnal precipitation cycle in climate models. Geophys. Res. Lett., 48, e2021GL093017, https://doi.org/10.1029/2021GL093017.
Cui, J. P., L. D. Tian, Z. W. Wei, C. Huntingford, P. Wang, Z. Y. Cai, N. Ma, and L. X. Wang, 2020: Quantifying the controls on evapotranspiration partitioning in the highest alpine meadow ecosystem. Water Resour. Res., 56, e2019WR024815, https://doi.org/10.1029/2019WR024815.
Dirmeyer, P. A., 2011: The terrestrial segment of soil moisture–climate coupling. Geophys. Res. Lett., 38, L16702, https://doi.org/10.1029/2011GL048268.
Dirmeyer, P. A., and Coauthors, 2018a: Verification of land–atmosphere coupling in forecast models, reanalyses, and land surface models using flux site observations. Journal of Hydrometeorology, 19, 375−392, https://doi.org/10.1175/JHM-D-17-0152.1.
Dirmeyer, P. A., R. D. Koster, and Z. C. Guo, 2006: Do global models properly represent the feedback between land and atmosphere. Journal of Hydrometeorology, 7, 1177−1198, https://doi.org/10.1175/JHM532.1.
Dirmeyer, P. A., Z. Y. Wang, M. J. Mbuh, and H. E. Norton, 2014: Intensified land surface control on boundary layer growth in a changing climate. Geophys. Res. Lett., 41, 1290−1294, https://doi.org/10.1002/2013GL058826.
Dirmeyer, P. A., S. Halder, and R. Bombardi, 2018b: On the harvest of predictability from land states in a global forecast model. J. Geophys. Res., 123, 13 111−13 127, https://doi.org/10.1029/2018JD029103.
Duan, A. M., and G. X. Wu, 2005: Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Climate Dyn., 24, 793−807, https://doi.org/10.1007/s00382-004-0488-8.
Duan, A. M., and G. X. Wu, 2008: Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part I: Observations. J. Climate, 21, 3149−3164, https://doi.org/10.1175/2007JCLI1912.1.
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937−1958, https://doi.org/10.5194/gmd-9-1937-2016.
Fan, K. K., Q. Zhang, V. P. Singh, P. Sun, C. Q. Song, X. D. Zhu, H. Q. Yu, and Z. X. Shen, 2019: Spatiotemporal impact of soil moisture on air temperature across the Tibet Plateau. Science of the Total Environment, 649, 1338−1348, https://doi.org/10.1016/j.scitotenv.2018.08.399.
Gallego-Elvira, B., C. M. Taylor, P. P. Harris, and D. Ghent, 2019: Evaluation of regional-scale soil moisture-surface flux dynamics in Earth system models based on satellite observations of land surface temperature. Geophys. Res. Lett., 46, 5480−5488, https://doi.org/10.1029/2019GL082962.
Gevaert, A. I., D. G. Miralles, R. A. M. de Jeu, J. Schellekens, and A. J. Dolman, 2018: Soil moisture-temperature coupling in a set of land surface models. J. Geophys. Res., 123, 1481−1498, https://doi.org/10.1002/2017JD027346.
Guillod, B. P., B. Orlowsky, D. G. Miralles, A. J. Teuling, and S. I. Seneviratne, 2015: Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nat. Commun., 6, 6443, https://doi.org/10.1038/ncomms7443.
Guo, X. Y., L. D. Tian, L. Wang, W. S. Yu, and D. M. Qu, 2017: River recharge sources and the partitioning of catchment evapotranspiration fluxes as revealed by stable isotope signals in a typical high-elevation arid catchment. J. Hydrol., 549, 616−630, https://doi.org/10.1016/j.jhydrol.2017.04.037.
Guo, Z. C., and Coauthors, 2006: GLACE: The global land–atmosphere coupling experiment. Part II: Analysis. Journal of Hydrometeorology, 7, 611−625, https://doi.org/10.1175/JHM511.1.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049, https://doi.org/10.1002/qj.3803.
Hohenegger, C., P. Brockhaus, C. S. Bretherton, and C. Schär, 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 5003−5020, https://doi.org/10.1175/2009JCLI2604.1.
Hu, X. L., and W. H. Yuan, 2021: Evaluation of ERA5 precipitation over the eastern periphery of the Tibetan plateau from the perspective of regional rainfall events. International Journal of Climatology, 41, 2625−2637, https://doi.org/10.1002/joc.6980.
Huffman, G., E. Stocker, D. Bolvin, E. Nelkin, and T. Jackson, 2019: GPM IMERG Final Precipitation L3 1 Day 0.1 Degree x 0.1 Degree v06 (GPM_3IMERGDF). Available from https://doi.org/10.5067/GPM/IMERGDF/DAY/06.
Imamovic, A., L. Schlemmer, and C. Schär, 2017: Collective impacts of orography and soil moisture on the soil moisture-precipitation feedback. Geophys. Res. Lett., 44, 11 682−11 691, https://doi.org/10.1002/2017GL075657.
Immerzeel, W. W., L. P. H. van Beek, and M. F. P. Bierkens, 2010: Climate change will affect the Asian water towers. Science, 328, 1382−1385, https://doi.org/10.1126/science.1183188.
Jiang, D. B., Z. L. Ding, H. Drange, and Y. Q. Gao, 2008: Sensitivity of East Asian climate to the progressive uplift and expansion of the Tibetan Plateau under the mid-Pliocene boundary conditions. Adv. Atmos. Sci., 25, 709−722, https://doi.org/10.1007/s00376-008-0709-x.
Koster, R. D., and Coauthors, 2006: GLACE: The global land–atmosphere coupling experiment. Part I: Overview. Journal of Hydrometeorology, 7, 590−610, https://doi.org/10.1175/JHM510.1.
Koster, R. D., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, https://doi.org/10.1029/2009GL041677.
Loeb, N. G., N. Manalo-Smith, S. Kato, W. F. Miller, S. K. Gupta, P. Minnis, and B. A. Wielicki, 2003: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Tropical Rainfall Measuring Mission satellite. Part I: Methodology. J. Appl. Meteorol. Climatol., 42, 240−265, https://doi.org/10.1175/1520-0450(2003)042<0240:ADMFTO>2.0.CO;2.
Mueller, B. and S. I. Seneviratne, 2014: Systematic land climate and evapotranspiration biases in CMIP5 simulations. Geophys. Res. Lett., 41, 128−134, https://doi.org/10.1002/2013GL058055.
Müller, O. V., P. L. Vidale, B. Vannière, R. Schiemann, and P. C. McGuire, 2021a: Does the HadGEM3-GC3.1 GCM overestimate land precipitation at high resolution? A constraint based on observed river discharge J. Hydrometeorol., 22, 2131−2151.
Müller, O. V., P. L. Vidale, B. Vannière, R. Schiemann, R. Senan, R. J. Haarsma, and J. H. Jungclaus, 2021b: Land–atmosphere coupling sensitivity to GCMs resolution: A multimodel assessment of local and remote processes in the Sahel hot spot. J. Climate, 34, 967−985, https://doi.org/10.1175/JCLI-D-20-0303.1.
Koster, R. D., P. A. Dirmeyer, Z. Guo, G. Bonan, E. Chan, P. Cox, C. Gordon, S. Kanae, E. Kowalczyk, D. Lawrence, et al., 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 1138−1140, https://doi.org/10.1126/science.1100217.
Pielke R. A. Sr, 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys., 39, 151−177, https://doi.org/10.1029/1999RG000072.
Schwingshackl, C., M. Hirschi, and S. I. Seneviratne, 2017: Quantifying spatiotemporal variations of soil moisture control on surface energy balance and near-surface air temperature. J. Climate, 30, 7105−7124, https://doi.org/10.1175/JCLI-D-16-0727.1.
Talib, J., C. M. Taylor, A. M. Duan, and A. G. Turner, 2021: Intraseasonal soil moisture–atmosphere feedbacks on the Tibetan Plateau circulation. J. Climate, 34, 1789−1807, https://doi.org/10.1175/JCLI-D-20-0377.1.
Taylor, C. M., A. Gounou, F. Guichard, P. P. Harris, R. J. Ellis, F. Couvreux, and M. De Kauwe, 2011: Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns. Nature Geoscience, 4, 430−433, https://doi.org/10.1038/ngeo1173.
Taylor, C. M., R. A. M. de Jeu, F. Guichard, P. P. Harris, and W. A. Dorigo, 2012: Afternoon rain more likely over drier soils. Nature, 489, 423−426, https://doi.org/10.1038/nature11377.
Taylor, C. M., C. E. Birch, D. J. Parker, N. Dixon, F. Guichard, G. Nikulin, and G. M. S. Lister, 2013: Modeling soil moisture-precipitation feedback in the Sahel: Importance of spatial scale versus convective parameterization. Geophys. Res. Lett., 40, 6213−6218, https://doi.org/10.1002/2013GL058511.
Taylor, K. E., and Coauthors, 2017: CMIP6 Global Attributes, DRS, Filenames, Directory Structure, and CV’s. Tech. Rep.v6.2.6., Program for Climate Model Diagnosis and Intercomparison.
Tong, K., F. G. Su, D. Q. Yang, L. L. Zhang, and Z. C. Hao, 2014: Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals. International Journal of Climatology, 34, 265−285, https://doi.org/10.1002/joc.3682.
Ukkola, A. M., M. G. De Kauwe, A. J. Pitman, M. J. Best, G. Abramowitz, V. Haverd, M. Decker, and N. Haughton, 2016: Land surface models systematically overestimate the intensity, duration and magnitude of seasonal-scale evaporative droughts. Environmental Research Letters, 11, 104012, https://doi.org/10.1088/1748-9326/11/10/104012.
Wan, B. C., Z. Q. Gao, F. Chen, and C. G. Lu, 2017: Impact of Tibetan Plateau surface heating on persistent extreme precipitation events in southeastern China. Mon. Wea. Rev., 145, 3485−3505, https://doi.org/10.1175/MWR-D-17-0061.1.
Wang, B., Q. Bao, B. Hoskins, G. X. Wu, and Y. M. Liu, 2008: Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett., 35, L14702, https://doi.org/10.1029/2008GL034330.
Wang, Z. Q., A. M. Duan, S. Yang, and K. Ullah, 2017: Atmospheric moisture budget and its regulation on the variability of summer precipitation over the Tibetan Plateau. J. Geophys. Res., 122, 614−630, https://doi.org/10.1002/2016JD025515.
You, Q. L., F. Y. Wu, L. C. Shen, N. Pepin, Z. H. Jiang, and S. C. Kang, 2020: Tibetan Plateau amplification of climate extremes under global warming of 1.5°C, 2°C and 3°C. Global and Planetary Change, 192, 103261, https://doi.org/10.1016/j.gloplacha.2020.103261.
Zhang, S. J., D. H. Wang, Z. K. Qin, Y. Y. Zheng, and J. P. Guo, 2018: Assessment of the GPM and TRMM precipitation products using the rain gauge network over the Tibetan Plateau. Journal of Meteorological Research, 32, 324−336, https://doi.org/10.1007/s13351-018-7067-0.
Zhao, C. L., X. H. Meng, Y. Q. Li, S. Lyu, J. P. Guo, and H. Z. Liu, 2022: Impact of soil moisture on afternoon convection triggering over the Tibetan Plateau based on 1-D boundary layer model. J. Geophys. Res., 127, e2021JD035591, https://doi.org/10.1029/2021JD035591.
Zhu, Y.-Y. and S. N. Yang, 2020: Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5. Advances in Climate Change Research, 11, 239−251, https://doi.org/10.1016/j.accre.2020.08.001.