Bergland, G., 1969: A radix-eight fast Fourier transform subroutine for real-valued series. IEEE Trans. Audio Electroacoust., 17, 138−144, https://doi.org/10.1109/TAU.1969.1162043.
Bi, Y., Q. Wang, Z. Yang, J. Chen, and W. Bai, 2018: Validation of Column-Averaged Dry-Air Mole Fraction of CO2 Retrieved from OCO-2 Using Ground-Based FTS Measurements. J. Meteorolog. Res., 32, 433−443, https://doi.org/10.1007/s13351-018-7118-6.
Cai, Z., K. Che, Y. Liu, D. Yang, and X. Yue, 2021: Decreased Anthropogenic CO2 Emissions during the COVID-19 Pandemic Estimated from FTS and MAX-DOAS Measurements at Urban Beijing. Remote Sens., 13, 517, https://doi.org/10.3390/rs13030517.
Chevallier, F., and Coauthors, 2005: Inferring CO2 sources and sinks from satellite observations: Method and application to TOVS data. J. Geophys. Res. Atmos., 110, https://doi.org/10.1029/2005JD006390.
Chevallier, F., and Coauthors, 2010: CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements. J. Geophys. Res. Atmos., 115, https://doi.org/10.1029/2010JD013887.
Chevallier, F., M. Remaud, C. W. O’Dell, D. Baker, P. Peylin, and A. Cozic, 2019: Objective evaluation of surface- and satellite-driven carbon dioxide atmospheric inversions. Atmos. Chem. Phys., 19, 14233-14251, doi: 10.5194/acp-19-14233-2019.
Chevallier, F.: Evaluation and Quality control document for the OCO-2-driven CO2 inversion FT19r1, available at: https:// https://atmosphere.copernicus.eu/sites/default/files/2020-05/CAMS73_2018SC2_D73.4.3.1-2020-v1_202004_v1.pdf. (last access: 17 October 2021), 2020.
Chen, J., and Coauthors, 2016: Differential column measurements using compact solar-tracking spectrometers. Atmos. Chem. Phys., 16, 8479−8498, https://doi.org/10.5194/acp-16-8479-2016.
Crippa, M., and Coauthors, 2020: Fossil CO2 emissions of all world countries–2020 report, doi: 10.2760/143674.
Dai, S., Y. Ren, S. Zuo, C. Lai, and B. Chen, 2020: Investigating the Uncertainties Propagation Analysis of CO2 Emissions Gridded Maps at the Urban Scale: A Case Study of Jinjiang City, China. Remote Sens., 12, 3932, https://doi.org/10.3390/rs12233932.
Dayalu, A., and Coauthors, 2020: Evaluating China’s anthropogenic CO2 emissions inventories: a northern China case study using continuous surface observations from 2005 to 2009,. Atmos. Chem. Phys., 20, 3569−3588, https://doi.org/10.5194/acp-20-3569-2020.
Fasoli, B., and Coauthors, 2018: Simulating atmospheric tracer concentrations for spatially distributed receptors: updates to the Stochastic Time-Inverted Lagrangian Transport model's R interface (STILT-R version 2). Geosci. Model Dev., 11, 2813−2824, https://doi.org/10.5194/gmd-11-2813-2018.
Feng, T., W. Zhou, S. Wu, Z. Niu, P. Cheng, X. Xiong, and G. Li, 2019a: High-resolution simulation of wintertime fossil fuel CO2 in Beijing, China: Characteristics, sources, and regional transport. Atmos. Environ., 198, 226−235, https://doi.org/10.1016/j.atmosenv.2018.10.054.
Feng, Y., M. Ning, Y. Lei, Y. Sun, W. Liu, and J. Wang, 2019b: Defending blue sky in China: Effectiveness of the “Air Pollution Prevention and Control Action Plan” on air quality improvements from 2013 to 2017,. J. Environ. Manage., 252, 109603, https://doi.org/10.1016/j.jenvman.2019.109603.
Frey, M., and Coauthors, 2019: Building the COllaborative Carbon Column Observing Network (COCCON): long-term stability and ensemble performance of the EM27/SUN Fourier transform spectrometer. Atmos. Meas. Tech., 12, 1513−1530, https://doi.org/10.5194/amt-12-1513-2019.
Gisi, M., F. Hase, S. Dohe, T. Blumenstock, A. Simon, and A. Keens, 2012: XCO2-measurements with a tabletop FTS using solar absorption spectroscopy. Atmos. Meas. Tech., 5, 2969−2980, https://doi.org/10.5194/amt-5-2969-2012.
Han, P., and Coauthors, 2020: A city-level comparison of fossil-fuel and industry processes-induced CO2 emissions over the Beijing-Tianjin-Hebei region from eight emission inventories. Carbon Balance Manage., 15, 1−16, https://doi.org/10.1186/s13021-020-00163-2.
Han, S., and Coauthors, 2009: Temporal variations of elemental carbon in Beijing. J. Geophys. Res. Atmos., 114, https://doi.org/10.1029/2009JD012027.
Hase, F., and Coauthors, 2004: Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements. J. Quant. Spectrosc. Radiat. Transfer, 87, 25−52, https://doi.org/10.1016/j.jqsrt.2003.12.008.
Hase, F., T. Blumenstock, S. Dohe, J. Groß, and M. Kiel, 2017: TCCON data from Karlsruhe, Germany, Release GGG2014R1. TCCON data archive, hosted by CaltechDATA, California Institute of Technology, Pasadena, CA, U.S.A..
Hase, F., M. Frey, M. Kiel, T. Blumenstock, R. Harig, A. Keens, and J. Orphal, 2016: Addition of a channel for XCO observations to a portable FTIR spectrometer for greenhouse gas measurements. Atmos. Meas. Tech., 9, 2303−2313, https://doi.org/10.5194/amt-9-2303-2016.
Hedelius, J. K., and Coauthors, 2017: Intercomparability of XCO2 and XCH4 from the United States TCCON sites. Atmos. Meas. Tech., 10, 1481−1493, https://doi.org/10.5194/amt-10-1481-2017.
Hedelius, J. K., J. Liu, T. Oda, S. Maksyutov, and P. O. Wennberg, 2018: Southern California megacity CO2, CH4, and CO flux estimates using ground- and space-based remote sensing and a Lagrangian model. Atmos. Chem. Phys., 18, 16271−16291, https://doi.org/10.5194/acp-18-16271-2018.
Hu, C., and Coauthors, 2019: Anthropogenic Methane Emission and Its Partitioning for the Yangtze River Delta Region of China. J. Geophys. Res. Biogeosci., 124, 1148−1170, https://doi.org/10.1029/2018JG004850.
Jacobs, N., and Coauthors, 2020: Quality controls, bias, and seasonality of CO2 columns in the boreal forest with Orbiting Carbon Observatory-2, Total Carbon Column Observing Network, and EM27/SUN measurements. Atmos. Meas. Tech., 13, 5033−5063, https://doi.org/10.5194/amt-13-5033-2020.
Keppel-Aleks, G., G. C. Toon, P. O. Wennberg, and N. M. Deutscher, 2007: Reducing the impact of source brightness fluctuations on spectra obtained by Fourier-transform spectrometry. Appl. Opt., 46, 4774−4779, https://doi.org/10.1364/AO.46.004774.
Klappenbach, F., and Coauthors, 2015: Accurate mobile remote sensing of XCO2 and XCH4 latitudinal transects from aboard a research vessel. Atmos. Meas. Tech., 8, 5023−5038, https://doi.org/10.5194/amt-8-5023-2015.
Le Quéré, C., and Coauthors, 2020: Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Change, 10, 647−653, https://doi.org/10.1038/s41558-020-0797-x.
Lei, R., and Coauthors, 2021: Fossil fuel CO2 emissions over metropolitan areas from space: A multi-model analysis of OCO-2 data over Lahore, Pakistan. Remote Sens. Environ., 264, 112625, https://doi.org/10.1016/j.rse.2021.112625.
Li, Y., and Coauthors, 2020: Long-term declining in carbon monoxide (CO) at a rural site of Beijing during 2006–2018 implies the improved combustion efficiency and effective emission control. J. Environ. Sci.,
Lin, J. C., C. Gerbig, S. C. Wofsy, A. E. Andrews, B. C. Daube, K. J. Davis, and C. A. Grainger, 2003: A near-field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model. J. Geophys. Res. Atmos., 108,
Mertz, L., 1967: Auxiliary computation for Fourier spectrometry. Infrared Phys, 7, 17−23, https://doi.org/10.1016/0020-0891(67)90026-7.
Morino, I., T. Matsuzaki, and M. Horikawa, 2018: TCCON data from Tsukuba (JP), 125HR, Release GGG2014.R2,
Myhre, G., and Coauthors, 2013: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys, 13, 1853−1877, https://doi.org/10.5194/acp-13-1853-2013.
Nassar, R., L. Napier-Linton, K. R. Gurney, R. J. Andres, T. Oda, F. R. Vogel, and F. Deng, 2013: Improving the temporal and spatial distribution of CO2 emissions from global fossil fuel emission data sets. J. Geophys. Res. Atmos., 118, 917−933, https://doi.org/10.1029/2012JD018196.
Naylor, D. A., and M. K. Tahic, 2007: Apodizing functions for Fourier transform spectroscopy. Journal of the Optical Society of America A, 24, 3644−3648, https://doi.org/10.1364/FTS.2005.FTuD3.
Niu, Z., and Coauthors, 2016: Atmospheric Fossil Fuel CO2 Traced by Δ14C in Beijing and Xiamen, China: Temporal Variations, Inland/Coastal Differences and Influencing Factors. Environ. Sci. Technol., 50, 5474−5480, https://doi.org/10.1021/acs.est.5b02591.
Panagi, M., and Coauthors, 2020: Investigating the regional contributions to air pollution in Beijing: a dispersion modelling study using CO as a tracer. Atmospheric Chemistry and Physics, 20, 2825−2838, https://doi.org/10.5194/acp-20-2825-2020.
Park, H., S. Jeong, H. Park, L. Labzovskii, and K. Bowman, 2021: An assessment of emission characteristics of Northern Hemisphere cities using spaceborne observations of CO2 , CO, and NO2. Remote Sens. Environ., 254, 112246, https://doi.org/10.1016/j.rse.2020.112246.
Popa, M. E., M. K. Vollmer, A. Jordan, W. A. Brand, S. Pathirana, M. Rothe, and T. Röckmann, 2014: Vehicle emissions of greenhouse gases and related tracers from a tunnel study: CO: CO2, N2O: CO2, CH4: CO2, O2: CO2 ratios, and the stable isotopes 13C and 18O in CO2 and CO. Atmos. Chem. Phys., 14, 2105−2123, https://doi.org/10.5194/acp-14-2105-2014.
Sargent, M., and Coauthors, 2018: Anthropogenic and biogenic CO2 fluxes in the Boston urban region. Proc. Nat. Acad. Sci., 115, 7491, https://doi.org/10.1073/pnas.1803715115.
Satterthwaite, D., 2008: Cities’ contribution to global warming: notes on the allocation of greenhouse gas emissions. Environ. & Urban, 20, 539−550, https://doi.org/10.1177/0956247808096127.
Satterthwaite, D., 2010: The Contribution of Cities to Global Warming and their Potential Contributions to Solutions. Environ. Urban. ASIA, 1, 1−12, https://doi.org/10.1177/097542530900100102.
Shan, C., and Coauthors, 2019: Regional CO emission estimated from ground-based remote sensing at Hefei site, China. Atmos. Res., 222, https://doi.org/10.1016/j.atmosres.2019.02.005.
Shekhar, A., and Coauthors, 2020: Anthropogenic CO2 emissions assessment of Nile Delta using XCO2 and SIF data from OCO-2 satellite. Environ. Res. Lett., 15, https://doi.org/10.1088/1748-9326/ab9cfe.
Silva, S. J., and A. F. Arellano, 2017: Characterizing Regional-Scale Combustion Using Satellite Retrievals of CO, NO2 and CO2. Remote Sens., 9, 744, https://doi.org/10.3390/rs9070744.
Silva, S. J., A. F. Arellano, and H. M. Worden, 2013: Toward anthropogenic combustion emission constraints from space‐based analysis of urban CO2/CO sensitivity. Geophys. Res. Lett., 40, 4971−4976, https://doi.org/10.1002/grl.50954.
Stocker, T. F., 2013: The closing door of climate targets. Science,, 339, 280−282, https://doi.org/10.1126/science.1232468.
Té, Y., and Coauthors, 2016: Seasonal variability of surface and column carbon monoxide over the megacity Paris, high-altitude Jungfraujoch and Southern Hemispheric Wollongong stations. Atmos. Chem. Phys., 16, 10911−10925, https://doi.org/10.5194/acp-16-10911-2016.
Té, Y., P. Jeseck, and C. Janssen, 2017: TCCON data from Paris, France, Release GGG2014R0. TCCON data archive, hosted by CaltechDATA, California Institute of Technology, Pasadena, CA, U.S.A. .
Toon, G. C. and Wunch, D., 2015: A stand-alone a priori profile generation tool for GGG2014 release, CaltechDATA,
Tohjima, Y., and Coauthors, 2014: Temporal changes in the emissions of CH4 and CO from China estimated from CH4/CO2 and CO/CO2 correlations observed at Hateruma Island. Atmos. Chem. Phys., 14, 1663−1677, https://doi.org/10.5194/acp-14-1663-2014.
Turnbull, J. C., and Coauthors, 2011: Atmospheric observations of carbon monoxide and fossil fuel CO2 emissions from East Asia. J. Geophys. Res. Atmos., 116, https://doi.org/10.1029/2011JD016691.
Vardag, S. N., C. Gerbig, G. Janssens-Maenhout, and I. Levin, 2015: Estimation of continuous anthropogenic CO2: model-based evaluation of CO2, CO, δ13C(CO2) and Δ14C(CO2) tracer methods. Atmos. Chem. Phys., 15, 12705−12729, https://doi.org/10.5194/acp-15-12705-2015.
Wang, R., and Coauthors, 2013: High-resolution mapping of combustion processes and implications for CO2 emissions. Atmos. Chem. Phys., 13, 5189−5203, https://doi.org/10.5194/acpd-12-21211-2012.
Wang, W., and Coauthors, 2017: Investigating the performance of a greenhouse gas observatory in Hefei, China. Atmos. Meas. Tech., 10, 2627−2643, https://doi.org/10.5194/amt-2016-296.
Wang, Y., J. W. Munger, S. Xu, M. B. Mcelroy, J. Hao, C. P. Nielsen, and H. Ma, 2010: CO2 and its correlation with CO at a rural site near Beijing: implications for combustion efficiency in China. Atmos. Chem. Phys., 10, 8881−8897, https://doi.org/10.5194/acp-10-8881-2010.
Wennberg, P. O., D. Wunch, C. Roehl, J.-F. Blavier, G. C. Toon, and N. Allen, 2017: TCCON data from California Institute of Technology, Pasadena, California, USA, Release GGG2014R1, TCCON data archive, hosted by CaltechDATA, California Institute of Technology, Pasadena, CA, U.S.A. .
West, J. J., and Coauthors, 2013: Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health. Nat. Clim. Change, 3, 885−889, https://doi.org/10.1038/NCLIMATE2009.
Worden, H. M., and Coauthors, 2012: Satellite-based estimates of reduced CO and CO2 emissions due to traffic restrictions during the 2008 Beijing Olympics. Geophys. Res. Lett., 39, https://doi.org/10.1029/2012GL052395.
Wu, D., and Coauthors, 2018: A Lagrangian approach towards extracting signals of urban CO2 emissions from satellite observations of atmospheric column CO2 (XCO2): X-Stochastic Time-Inverted Lagrangian Transport model (“X-STILT v1”). Geosci. Model Dev., 11, 4843−4871, https://doi.org/10.5194/gmd-11-4843-2018.
Wunch, D., P. O. Wennberg, G. C. Toon, G. Keppel-Aleks, and Y. G. Yavin, 2009: Emissions of greenhouse gases from a North American megacity. Geophys. Res. Lett., 36, https://doi.org/10.1029/2009GL039825.
Wunch, D., and Coauthors, 2016: Quantifying the loss of processed natural gas within California’s South Coast Air Basin using long-term measurements of ethane and methane. Atmos. Chem. Phys., 16, 14091−14105, https://doi.org/10.5194/acp-16-14091-2016.
Wunch, D., and Coauthors, 2011: A method for evaluating bias in global measurements of CO2 total columns from space. Atmos. Chem. Phys., 11, 12317−12337, https://doi.org/10.5194/acp-11-12317-2011.
Wunch, D., and Coauthors, 2010: Calibration of the Total Carbon Column Observing Network using aircraft profile data. Atmos. Meas. Tech., 3, 1351−1362, https://doi.org/10.5194/amtd-3-2603-2010.
Yang, E. G., E. A. Kort, D. Wu, J. C. Lin, T. Oda, X. Ye, and T. Lauvaux, 2020a: Using Space-Based Observations and Lagrangian Modeling to Evaluate Urban Carbon Dioxide Emissions in the Middle East. J. Geophys. Res. Atmos., 125, e2019JD031922, https://doi.org/10.1029/2019JD031922.
Yang, Y., and Coauthors, 2020b: New ground-based Fourier-transform near-infrared solar absorption measurements of XCO2, XCH4 and XCO at Xianghe, China. Earth Syst. Sci. Data, 12, 1679−1696, https://doi.org/10.5194/essd-12-1679-2020.
Yang, Z., and Coauthors, 2007: New constraints on Northern Hemisphere growing season net flux. Geophys. Res. Lett., 34, https://doi.org/10.1029/2007GL029742.
Ye, X., and Coauthors, 2020: Constraining Fossil Fuel CO2 Emissions From Urban Area Using OCO-2 Observations of Total Column CO2. J. Geophys. Res. Atmos., 125, e2019JD030528, https://doi.org/10.1029/2019JD030528.
Zeng, J., and Coauthors, 2020: Global terrestrial carbon fluxes of 1999–2019 estimated by upscaling eddy covariance data with a random forest. Sci. Data, 7, 313, https://doi.org/10.1038/s41597-020-00653-5.
Zhao, Y., C. P. Nielsen, M. B. McElroy, L. Zhang, and J. Zhang, 2012: CO emissions in China: Uncertainties and implications of improved energy efficiency and emission control. Atmos. Environ., 49, 103−113, https://doi.org/10.1016/j.atmosenv.2011.12.015.
Zheng, B., F. Chevallier, P. Ciais, G. Broquet, Y. Wang, J. Lian, and Y. Zhao, 2020: Observing carbon dioxide emissions over China’s cities and industrial areas with the Orbiting Carbon Observatory-2,. Atmos. Chem. Phys., 20, 8501−8510, https://doi.org/10.5194/acp-20-8501-2020.
Zheng, B., and Coauthors, 2018a: Rapid decline in carbon monoxide emissions and export from East Asia between years 2005 and 2016,. Environ. Res. Lett., 13, 044007, https://doi.org/10.1088/1748-9326/aab2b3.
Zheng, B., and Coauthors, 2018b: Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys., 18, 14095−14111, https://doi.org/10.5194/acp-18-14095-2018.